56.4.26 problem 24

Internal problem ID [8915]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 24
Date solved : Monday, January 27, 2025 at 05:19:16 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=x^{3} \cos \left (x \right ) \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 45

Order:=6; 
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = x^3*cos(x),y(x),type='series',x=0);
 
\[ y = c_{1} \sqrt {x}\, \left (1+\frac {1}{6} x^{2}+\frac {1}{168} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x \left (1+\frac {1}{10} x^{2}+\frac {1}{360} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+x^{3} \left (\frac {1}{10}-\frac {1}{90} x^{2}+\operatorname {O}\left (x^{4}\right )\right ) \]

Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 215

AsymptoticDSolveValue[2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+(1-x^2)*y[x]==x^3+Cos[x],y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+c_2 x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right )+\sqrt {x} \left (-\frac {x^{11/2}}{3861}-\frac {x^{9/2}}{45}+\frac {x^{7/2}}{630}-\frac {2 x^{5/2}}{5}+\frac {4 x^{3/2}}{15}+\frac {2}{\sqrt {x}}\right ) \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right ) \left (\frac {x^6}{1008}+\frac {37 x^5}{69300}+\frac {x^4}{24}-\frac {x^3}{84}+\frac {x^2}{2}-\frac {x}{3}-\frac {1}{x}\right ) \]