58.1.51 problem 51

Internal problem ID [9122]
Book : Second order enumerated odes
Section : section 1
Problem number : 51
Date solved : Monday, January 27, 2025 at 05:43:58 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.184 (sec). Leaf size: 126

dsolve(y(x)*diff(y(x),x$2)^3+y(x)^3*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ y &= c_{1} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x -\int _{}^{\textit {\_Z}}-\frac {1}{\textit {\_f}^{2}-\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} +c_{1} \right )d x +c_{2}} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x +2 \left (\int _{}^{\textit {\_Z}}\frac {1}{i \left (-\textit {\_f} \right )^{{1}/{3}} \sqrt {3}+2 \textit {\_f}^{2}+\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} \right )+c_{1} \right )d x +c_{2}} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x -2 \left (\int _{}^{\textit {\_Z}}\frac {1}{i \left (-\textit {\_f} \right )^{{1}/{3}} \sqrt {3}-2 \textit {\_f}^{2}-\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} \right )+c_{1} \right )d x +c_{2}} \\ \end{align*}

Solution by Mathematica

Time used: 2.742 (sec). Leaf size: 800

DSolve[y[x]*D[y[x],{x,2}]^3+y[x]^3*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to 0 \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to 0 \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 (-c_1)}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5}{3} (-1) c_1\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 (-c_1)}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\ \end{align*}