58.1.52 problem 52
Internal
problem
ID
[9123]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
52
Date
solved
:
Monday, January 27, 2025 at 05:45:23 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
\begin{align*} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.214 (sec). Leaf size: 208
dsolve(y(x)*diff(y(x),x$2)^3+y(x)^3*diff(y(x),x)^5=0,y(x), singsol=all)
\begin{align*}
y &= 0 \\
y &= c_{1} \\
\int _{}^{y}\frac {1}{\operatorname {RootOf}\left (5 \left (\int _{\textit {\_g}}^{\textit {\_Z}}\frac {1}{\textit {\_a} \left (-\textit {\_a}^{2} \textit {\_f}^{2}\right )^{{1}/{3}}-5 \textit {\_f}}d \textit {\_f} \right )-\ln \left (\textit {\_a}^{5}+125\right )+5 c_{1} \right )}d \textit {\_a} -x -c_{2} &= 0 \\
\int _{}^{y}\frac {1}{\operatorname {RootOf}\left (\sqrt {3}\, \ln \left (\textit {\_a}^{5}+125\right )-i \ln \left (\textit {\_a}^{5}+125\right )+20 \left (\int _{\textit {\_g}}^{\textit {\_Z}}\frac {1}{2 i \textit {\_a} \left (-\textit {\_a}^{2} \textit {\_f}^{2}\right )^{{1}/{3}}+5 i \textit {\_f} +5 \sqrt {3}\, \textit {\_f}}d \textit {\_f} \right )-20 c_{1} \right )}d \textit {\_a} -x -c_{2} &= 0 \\
\int _{}^{y}\frac {1}{\operatorname {RootOf}\left (\sqrt {3}\, \ln \left (\textit {\_a}^{5}+125\right )+i \ln \left (\textit {\_a}^{5}+125\right )+20 \left (\int _{\textit {\_g}}^{\textit {\_Z}}\frac {1}{-2 i \textit {\_a} \left (-\textit {\_a}^{2} \textit {\_f}^{2}\right )^{{1}/{3}}+5 \sqrt {3}\, \textit {\_f} -5 i \textit {\_f}}d \textit {\_f} \right )-20 c_{1} \right )}d \textit {\_a} -x -c_{2} &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 24.151 (sec). Leaf size: 449
DSolve[y[x]*D[y[x],{x,2}]^3+y[x]^3*D[y[x],x]^5==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to 0 \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},-\frac {3 i \left (-i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 i \left (i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
y(x)\to 0 \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{(-c_1){}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},-\frac {3 i \left (-i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 (-c_1)}\right )}{(-c_1){}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 i \left (i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 (-c_1)}\right )}{(-c_1){}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},-\frac {3 i \left (-i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {27 \text {$\#$1} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},3,\frac {8}{5},\frac {3 i \left (i+\sqrt {3}\right ) \text {$\#$1}^{5/3}}{10 c_1}\right )}{c_1{}^3}\&\right ][x+c_2] \\
\end{align*}