# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime } = k \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \] |
✗ |
✓ |
|
\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = x \] |
✗ |
✗ |
|
\[ {}y^{2} y^{\prime \prime } = x \] |
✗ |
✓ |
|
\[ {}y^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}3 y y^{\prime \prime }+y = 5 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = c \] |
✓ |
✓ |
|
\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 9 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 6 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+4 z \left (t \right )] \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{\frac {3}{4}}-3 k x \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -1+x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \] |
✓ |
✓ |
|
\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|