# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+y = \frac {1}{x^{2}} \] |
✓ |
✗ |
|
\[ {}x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime } = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (2+x \right ) {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \] |
✓ |
✓ |
|
\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x +y+b y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x +y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x y} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1+6 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{\frac {7}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = t +y \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = t +y \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}a {y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}a {y^{\prime \prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2} = x \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{3} = 0 \] |
✓ |
✓ |
|