# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \] |
✓ |
✓ |
|
\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|