4.105 Problems 10401 to 10500

Table 4.209: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

10401

\[ {}a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0 \]

10402

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

10403

\[ {}x \left (a \,x^{k}+b \right ) y^{\prime } = \alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \]

10404

\[ {}x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s = 0 \]

10405

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = c y^{2}-b \,x^{m -1} y+a \,x^{n -2} \]

10406

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = a \,x^{n -2} y^{2}+b \,x^{m -1} y+c \]

10407

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = \alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \]

10408

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+x y^{\prime }\right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0 \]

10409

\[ {}y^{\prime } = a y^{2}+b \,{\mathrm e}^{\lambda x} \]

10410

\[ {}y^{\prime } = y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

10411

\[ {}y^{\prime } = \sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \]

10412

\[ {}y^{\prime } = \sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \]

10413

\[ {}y^{\prime } = y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

10414

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \]

10415

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \]

10416

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \]

10417

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \]

10418

\[ {}y^{\prime } = b \,{\mathrm e}^{x \mu } y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

10419

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

10420

\[ {}y^{\prime } = a \,{\mathrm e}^{x \mu } y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

10421

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{x \mu } y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

10422

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{x \mu } y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

10423

\[ {}y^{\prime } = a \,{\mathrm e}^{x \mu } y^{2}+a b \,{\mathrm e}^{x \left (\lambda +\mu \right )} y-b \lambda \,{\mathrm e}^{\lambda x} \]

10424

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \]

10425

\[ {}y^{\prime } = a \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y^{2}+\left (b \,{\mathrm e}^{x \left (\lambda +\mu \right )}-\lambda \right ) y+c \,{\mathrm e}^{x \mu } \]

10426

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x} \]

10427

\[ {}y^{\prime } = {\mathrm e}^{x \mu } \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \]

10428

\[ {}\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime } = y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \]

10429

\[ {}\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{x \mu } = 0 \]

10430

\[ {}y^{\prime } = y^{2}+a x \,{\mathrm e}^{\lambda x} y+{\mathrm e}^{\lambda x} a \]

10431

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

10432

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \]

10433

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \]

10434

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \]

10435

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \]

10436

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

10437

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

10438

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \]

10439

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} {\mathrm e}^{\lambda x} y-{\mathrm e}^{\lambda x} a \]

10440

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \]

10441

\[ {}y^{\prime } = a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \]

10442

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

10443

\[ {}x y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \]

10444

\[ {}x y^{\prime } = a \,x^{2 n} {\mathrm e}^{\lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-n \right ) y+c \,{\mathrm e}^{\lambda x} \]

10445

\[ {}y^{\prime } = y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \]

10446

\[ {}y^{\prime } = a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+a \,b^{2} \]

10447

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \]

10448

\[ {}x^{4} \left (y^{\prime }-y^{2}\right ) = a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \]

10449

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sinh \left (\lambda x \right )-a^{2} \sinh \left (\lambda x \right )^{2} \]

10450

\[ {}y^{\prime } = y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \]

10451

\[ {}y^{\prime } = y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \]

10452

\[ {}y^{\prime } = \lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \]

10453

\[ {}y^{\prime } = \left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \]

10454

\[ {}\left (a \sinh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \sinh \left (x \mu \right ) y-d^{2}+c d \sinh \left (x \mu \right ) \]

10455

\[ {}\left (a \sinh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right ) = 0 \]

10456

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \]

10457

\[ {}y^{\prime } = y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \]

10458

\[ {}y^{\prime } = y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \]

10459

\[ {}y^{\prime } = \left (a \cosh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right )^{2} \]

10460

\[ {}2 y^{\prime } = \left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \]

10461

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+a \cosh \left (\lambda x \right )^{n} \sinh \left (\lambda x \right )^{-n -4} \]

10462

\[ {}y^{\prime } = a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \]

10463

\[ {}y^{\prime } = a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \]

10464

\[ {}\left (a \cosh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cosh \left (x \mu \right ) y-d^{2}+c d \cosh \left (x \mu \right ) \]

10465

\[ {}\left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right ) = 0 \]

10466

\[ {}y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

10467

\[ {}y^{\prime } = y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

10468

\[ {}y^{\prime } = y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \]

10469

\[ {}\left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \tanh \left (x \mu \right ) y-d^{2}+c d \tanh \left (x \mu \right ) \]

10470

\[ {}y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

10471

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

10472

\[ {}y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

10473

\[ {}\left (a \coth \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \coth \left (x \mu \right ) y-d^{2}+c d \coth \left (x \mu \right ) \]

10474

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

10475

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

10476

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \]

10477

\[ {}x y^{\prime } = a y^{2}+b \ln \left (x \right )+c \]

10478

\[ {}x y^{\prime } = a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \]

10479

\[ {}x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \]

10480

\[ {}x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1} \]

10481

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \]

10482

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

10483

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \]

10484

\[ {}x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

10485

\[ {}y^{\prime } = y^{2}+a \ln \left (\beta x \right ) y-a b \ln \left (\beta x \right )-b^{2} \]

10486

\[ {}y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

10487

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

10488

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

10489

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

10490

\[ {}y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

10491

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \]

10492

\[ {}x y^{\prime } = \left (a y+b \ln \left (x \right )\right )^{2} \]

10493

\[ {}x y^{\prime } = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

10494

\[ {}x y^{\prime } = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

10495

\[ {}x y^{\prime } = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

10496

\[ {}x^{2} y^{\prime } = y^{2} a^{2} x^{2}-x y+b^{2} \ln \left (x \right )^{n} \]

10497

\[ {}\left (a \ln \left (x \right )+b \right ) y^{\prime } = y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \]

10498

\[ {}\left (a \ln \left (x \right )+b \right ) y^{\prime } = \ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+c \lambda \]

10499

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

10500

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]