4.129 Problems 12801 to 12900

Table 4.257: Main lookup table sequentially arranged




#

ODE

Mathematica

Maple





12801

\[ {}y^{\prime \prime }+9 y = 1 \]





12802

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]





12803

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12804

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]





12805

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]





12806

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]





12807

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]





12808

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]





12809

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (-1+x \right )^{2} & 1\le x \end {array}\right . \]





12810

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]





12811

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]





12812

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]





12813

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]





12814

\[ {}y^{\prime }+3 y = \delta \left (-2+x \right ) \]





12815

\[ {}y^{\prime }-3 y = \delta \left (-1+x \right )+2 \operatorname {Heaviside}\left (-2+x \right ) \]





12816

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]





12817

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (-1+x \right ) \]





12818

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]





12819

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]





12820

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]





12821

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]





12822

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )] \]





12823

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )+x -1, y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right )-5 x -2] \]





12824

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {2 y_{1} \left (x \right )}{x}-\frac {y_{2} \left (x \right )}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}}, y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+1-6 x\right ] \]





12825

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]





12826

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+y_{2} \left (x \right )] \]





12827

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]





12828

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]





12829

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]





12830

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]





12839

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+5 \,{\mathrm e}^{x}, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 \,{\mathrm e}^{-x}] \]





12840

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )-2 y_{1} \left (x \right )+\sin \left (2 x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+y_{2} \left (x \right )-2 \cos \left (3 x \right )] \]





12841

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{3} \left (x \right )-y_{1} \left (x \right )] \]





12842

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 x y_{1} \left (x \right )-x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]





12843

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]





12844

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+4 x -2, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )+3 x] \]





12845

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}\right ] \]





12846

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]





12847

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]





12848

\[ {}[y_{1}^{\prime }\left (x \right ) = 5 y_{1} \left (x \right )-5 y_{2} \left (x \right )-5 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+4 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-5 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]





12849

\[ {}[y_{1}^{\prime }\left (x \right ) = 4 y_{1} \left (x \right )+6 y_{2} \left (x \right )+6 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-4 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]





12850

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )-3 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{3} \left (x \right )] \]





12851

\[ {}[y_{1}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )-y_{2} \left (x \right )+y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-2 y_{2} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right )-2 y_{3} \left (x \right )] \]





12852

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+2 y_{2} \left (x \right )+4 y_{3} \left (x \right )] \]





12853

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{3} \left (x \right )-4 y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 4 y_{3} \left (x \right )+3 y_{4} \left (x \right )] \]





12854

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-5 y_{3} \left (x \right )] \]





12855

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )+3 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{3} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{4} \left (x \right )] \]





12856

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )+y_{4} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = y_{3} \left (x \right )] \]





12857

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]





12858

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]





12859

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]





12860

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )] \]





12861

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]





12862

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]





12863

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )+2, y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-3] \]





12864

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )-6, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2] \]





12865

\[ {}y^{\prime } = \frac {y+1}{t +1} \]





12866

\[ {}y^{\prime } = t^{2} y^{2} \]





12867

\[ {}y^{\prime } = t^{4} y \]





12868

\[ {}y^{\prime } = 2 y+1 \]





12869

\[ {}y^{\prime } = 2-y \]





12870

\[ {}y^{\prime } = {\mathrm e}^{-y} \]





12871

\[ {}x^{\prime } = 1+x^{2} \]





12872

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]





12873

\[ {}y^{\prime } = \frac {t}{y} \]





12874

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]





12875

\[ {}y^{\prime } = t y^{\frac {1}{3}} \]





12876

\[ {}y^{\prime } = \frac {1}{2 y+1} \]





12877

\[ {}y^{\prime } = \frac {2 y+1}{t} \]





12878

\[ {}y^{\prime } = y \left (1-y\right ) \]





12879

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]





12880

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]





12881

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]





12882

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]





12883

\[ {}y^{\prime } = y^{2}-4 \]





12884

\[ {}w^{\prime } = \frac {w}{t} \]





12885

\[ {}y^{\prime } = \sec \left (y\right ) \]





12886

\[ {}x^{\prime } = -x t \]





12887

\[ {}y^{\prime } = t y \]





12888

\[ {}y^{\prime } = -y^{2} \]





12889

\[ {}y^{\prime } = t^{2} y^{3} \]





12890

\[ {}y^{\prime } = -y^{2} \]





12891

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]





12892

\[ {}y^{\prime } = 2 y+1 \]





12893

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]





12894

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]





12895

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]





12896

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]





12897

\[ {}y^{\prime } = \frac {1}{2 y+3} \]





12898

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]





12899

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]





12900

\[ {}y^{\prime } = t^{2}+t \]