# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \] |
✓ |
✓ |
|
\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \] |
✗ |
✓ |
|
\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 31 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 27 x +18 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\alpha y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-i y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 2+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 2+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|