4.128 Problems 12701 to 12800

Table 4.255: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

12701

\[ {}y^{\prime } = \frac {y}{x} \]

12702

\[ {}y^{\prime } = \frac {y}{x} \]

12703

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

12704

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

12705

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

12706

\[ {}y^{\prime } = y^{2} \]

12707

\[ {}y^{\prime } = y^{2} \]

12708

\[ {}y^{\prime } = y^{2} \]

12709

\[ {}y^{\prime } = y^{3} \]

12710

\[ {}y^{\prime } = y^{3} \]

12711

\[ {}y^{\prime } = y^{3} \]

12712

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

12713

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

12714

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

12715

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

12716

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

12717

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

12718

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

12719

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

12720

\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \]

12721

\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \]

12722

\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \]

12723

\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \]

12724

\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \]

12725

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

12726

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

12727

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

12728

\[ {}y^{\prime } = \frac {y}{y-x} \]

12729

\[ {}y^{\prime } = \frac {y}{y-x} \]

12730

\[ {}y^{\prime } = \frac {y}{y-x} \]

12731

\[ {}y^{\prime } = \frac {y}{y-x} \]

12732

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

12733

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

12734

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

12735

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

12736

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

12737

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

12738

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

12739

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

12740

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

12741

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

12742

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

12743

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

12744

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

12745

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

12746

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

12747

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

12748

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

12749

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

12750

\[ {}y^{\prime \prime }-y = 0 \]

12751

\[ {}y^{\prime \prime }+y = 0 \]

12752

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12753

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

12754

\[ {}y^{\prime \prime }-y = 0 \]

12755

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

12756

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

12757

\[ {}y^{\prime \prime }-4 y = 31 \]

12758

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]

12759

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

12760

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

12761

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

12762

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

12763

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

12764

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

12765

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

12766

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12767

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

12768

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

12769

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

12770

\[ {}y^{\prime \prime }+\alpha y = 0 \]

12771

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

12772

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

12773

\[ {}y^{\prime }-i y = 0 \]

12774

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

12775

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

12776

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

12777

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \]

12778

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

12779

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

12780

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

12781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

12782

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

12783

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

12784

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

12785

\[ {}y^{\prime }-y = 0 \]

12786

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

12787

\[ {}y^{\prime }+2 y = 4 \]

12788

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

12789

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

12790

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

12791

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

12792

\[ {}y^{\prime } = {\mathrm e}^{x} \]

12793

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

12794

\[ {}y^{\prime \prime }-9 y = 2+x \]

12795

\[ {}y^{\prime \prime }+9 y = 2+x \]

12796

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]

12797

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]

12798

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

12799

\[ {}y^{\prime }-2 y = 6 \]

12800

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]