4.133 Problems 13201 to 13300

Table 4.265: Main lookup table sequentially arranged




#

ODE

Mathematica

Maple





13201

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]





13202

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]





13203

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]





13204

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]





13205

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13206

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]





13207

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]





13208

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]





13209

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13210

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]





13211

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13212

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]





13213

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13214

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]





13215

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]





13216

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]





13217

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]





13218

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]





13219

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]





13220

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]





13221

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]





13222

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]





13223

\[ {}y^{\prime \prime }+4 y = 8 \]





13224

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]





13225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]





13226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]





13227

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]





13228

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]





13229

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]





13230

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]





13231

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]





13232

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]





13233

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]





13234

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (-1+t \right )-3 \delta \left (t -4\right ) \]





13235

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]





13236

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]





13237

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]





13238

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]





13239

\[ {}y^{\prime \prime }+16 y = 0 \]





13240

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





13242

\[ {}y^{\prime \prime }+16 y = t \]





13243

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]





13244

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]





13245

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]





13246

\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \]





13247

\[ {}y y^{\prime } = 2 x \]





13248

\[ {}y^{\prime \prime } = \frac {1+x}{-1+x} \]





13249

\[ {}x^{2} y^{\prime \prime } = 1 \]





13250

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]





13251

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]





13252

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]





13253

\[ {}y^{\prime } = 4 x^{3} \]





13254

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]





13255

\[ {}x y^{\prime }+\sqrt {x} = 2 \]





13256

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]





13257

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]





13258

\[ {}y^{\prime } = x \cos \left (x \right ) \]





13259

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]





13260

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]





13261

\[ {}1 = x^{2}-9 y^{\prime } \]





13262

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]





13263

\[ {}y^{\prime \prime }-3 = x \]





13264

\[ {}y^{\prime \prime \prime \prime } = 1 \]





13265

\[ {}y^{\prime } = 40 \,{\mathrm e}^{2 x} x \]





13266

\[ {}\left (x +6\right )^{\frac {1}{3}} y^{\prime } = 1 \]





13267

\[ {}y^{\prime } = \frac {-1+x}{1+x} \]





13268

\[ {}x y^{\prime }+2 = \sqrt {x} \]





13269

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]





13270

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]





13271

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]





13272

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]





13273

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]





13274

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]





13275

\[ {}y^{\prime } = 3 \sqrt {x +3} \]





13276

\[ {}y^{\prime } = 3 \sqrt {x +3} \]





13277

\[ {}y^{\prime } = 3 \sqrt {x +3} \]





13278

\[ {}y^{\prime } = 3 \sqrt {x +3} \]





13279

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]





13280

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]





13281

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]





13282

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]





13283

\[ {}x y^{\prime } = \sin \left (x \right ) \]





13284

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]





13285

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]





13286

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]





13287

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]





13288

\[ {}y^{\prime }+3 x y = 6 x \]





13289

\[ {}\sin \left (x +y\right )-y y^{\prime } = 0 \]





13290

\[ {}y^{\prime }-y^{3} = 8 \]





13291

\[ {}x^{2} y^{\prime }+x y^{2} = x \]





13292

\[ {}y^{\prime }-y^{2} = x \]





13293

\[ {}y^{3}-25 y+y^{\prime } = 0 \]





13294

\[ {}\left (-2+x \right ) y^{\prime } = 3+y \]





13295

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]





13296

\[ {}y^{\prime }+2 y-y^{2} = -2 \]





13297

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]





13298

\[ {}y^{\prime } = 2 \sqrt {y} \]





13299

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]





13300

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]