4.132 Problems 13101 to 13200

Table 4.263: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13101

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

13102

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13103

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

13104

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

13105

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

13106

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

13107

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

13108

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13109

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

13110

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {9 x \left (t \right )}{10}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\frac {11 y \left (t \right )}{10}\right ] \]

13111

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )] \]

13112

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

13113

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13114

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

13115

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13116

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

13117

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

13118

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

13119

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13120

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )] \]

13121

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right )] \]

13122

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13123

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

13124

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

13125

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

13126

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

13127

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13128

\[ {}\left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{10}, y^{\prime }\left (t \right ) = \frac {z \left (t \right )}{5}, z^{\prime }\left (t \right ) = \frac {2 x \left (t \right )}{5}\right ] \]

13129

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right ), z^{\prime }\left (t \right ) = 2 z \left (t \right )] \]

13130

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

13131

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+z \left (t \right )] \]

13132

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+2 z \left (t \right )] \]

13133

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

13134

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

13135

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

13136

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

13137

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

13138

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

13139

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )-z \left (t \right )] \]

13140

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 5 x \left (t \right )-5 y \left (t \right )] \]

13141

\[ {}\left [x^{\prime }\left (t \right ) = -10 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = 28 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = -\frac {8 z \left (t \right )}{3}\right ] \]

13142

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

13145

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

13147

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13148

\[ {}\left [x^{\prime }\left (t \right ) = \pi ^{2} x \left (t \right )+\frac {187 y \left (t \right )}{5}, y^{\prime }\left (t \right ) = \sqrt {555}\, x \left (t \right )+\frac {400617 y \left (t \right )}{5000}\right ] \]

13149

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

13150

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

13151

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13152

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13153

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13154

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13155

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )-4 y \left (t \right )] \]

13156

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13157

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

13158

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13160

\[ {}y^{\prime \prime }+2 y = 0 \]

13161

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

13162

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

13163

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

13164

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

13165

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

13166

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

13167

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

13168

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

13169

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]

13170

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]

13171

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

13172

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

13173

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]

13174

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]

13175

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]

13176

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]

13177

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]

13178

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]

13179

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

13180

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]

13181

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]

13182

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]

13183

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]

13184

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]

13185

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]

13186

\[ {}y^{\prime \prime }+2 y = -3 \]

13187

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]

13188

\[ {}y^{\prime \prime }+9 y = 6 \]

13189

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]

13190

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]

13191

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]

13192

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]

13193

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]

13194

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]

13195

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]

13196

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]

13197

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]

13198

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]

13199

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]

13200

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]