# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+2 x = 2 \sqrt {x^{2}+y} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}+4 x^{3}+3 y^{2} y^{\prime } x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y^{4}+y^{3} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (y+1\right )-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{3}+\left (4 y^{3} x^{3}-3 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6+12 y^{2} x^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y-6 x^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y^{2}-6 y \] |
✓ |
✓ |
|
\[ {}4 y^{2}-y^{2} x^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x +y} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+y^{2} x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-2 x y+x^{2} \] |
✓ |
✓ |
|
\[ {}4 x y-6+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}+y^{2} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}3 y-x^{3}+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x y^{3}-y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{2}-4\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-4\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x y-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 y}{1+x}-y^{2} \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \] |
✓ |
✓ |
|
\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+1-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) y^{\prime }-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{3} y^{\prime } x = y^{4}-x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \] |
✓ |
✓ |
|
\[ {}2 y-6 x +\left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \] |
✓ |
✓ |
|
\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \] |
✓ |
✓ |
|
\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \] |
✓ |
✓ |
|
\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \] |
✓ |
✓ |
|