4.136 Problems 13501 to 13600

Table 4.271: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13501

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

13502

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13503

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13504

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

13505

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

13506

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

13507

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

13508

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

13509

\[ {}y^{\prime \prime } = y^{\prime } \]

13510

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

13511

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13512

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

13513

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]

13514

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

13515

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13516

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

13517

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]

13518

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13519

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13520

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13521

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13522

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13523

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13524

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13525

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13526

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

13527

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

13528

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

13529

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

13530

\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \]

13531

\[ {}y^{\prime \prime \prime }+y = 0 \]

13532

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

13533

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

13534

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

13535

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

13536

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13537

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13538

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

13539

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13540

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13541

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

13542

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

13543

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

13544

\[ {}y^{\prime \prime }+y = 0 \]

13545

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

13546

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

13547

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13549

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13550

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

13551

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

13552

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

13553

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

13554

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

13555

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

13556

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

13557

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

13558

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

13559

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

13560

\[ {}y^{\prime \prime }+4 y = 0 \]

13561

\[ {}y^{\prime \prime }-4 y = 0 \]

13562

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13563

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13564

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13565

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13566

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13567

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13568

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

13569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13570

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13571

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13572

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

13573

\[ {}y^{\prime \prime }-4 y = 0 \]

13574

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

13575

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

13576

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

13577

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

13578

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

13579

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

13580

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

13581

\[ {}y^{\prime \prime }-25 y = 0 \]

13582

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

13583

\[ {}4 y^{\prime \prime }-y = 0 \]

13584

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

13585

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13586

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13587

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13588

\[ {}y^{\prime \prime }-9 y = 0 \]

13589

\[ {}y^{\prime \prime }-9 y = 0 \]

13590

\[ {}y^{\prime \prime }-9 y = 0 \]

13591

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13592

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13593

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

13594

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

13595

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

13596

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

13597

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13598

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13600

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]