# |
ODE |
Mathematica |
Maple |
\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|