4.152 Problems 15101 to 15200

Table 4.303: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

15101

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

15102

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

15103

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = a \]

15104

\[ {}y^{\frac {2}{5}}+{y^{\prime }}^{\frac {2}{5}} = a^{\frac {2}{5}} \]

15105

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

15106

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

15107

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

15108

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

15109

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

15110

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

15111

\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

15112

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

15113

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

15114

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

15115

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

15116

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

15117

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

15118

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 \,{\mathrm e}^{x} y = 1-{\mathrm e}^{2 x} \]

15119

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

15120

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

15121

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+x y+1 \]

15122

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0 \]

15123

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

15124

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

15125

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

15126

\[ {}y^{\prime } = y^{\frac {2}{3}}+a \]

15127

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

15128

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

15129

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

15130

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

15131

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

15132

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

15133

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

15134

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

15135

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

15136

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

15137

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

15138

\[ {}x \sin \left (x \right ) y^{\prime }+\left (-x \cos \left (x \right )+\sin \left (x \right )\right ) y = \cos \left (x \right ) \sin \left (x \right )-x \]

15139

\[ {}y^{\prime }+\cos \left (x \right ) y = y^{n} \sin \left (2 x \right ) \]

15140

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

15141

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

15142

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

15143

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

15144

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

15145

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

15146

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

15147

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

15148

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

15149

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

15150

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

15151

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

15152

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

15153

\[ {}y^{2} y^{\prime } x -y^{3} = \frac {x^{4}}{3} \]

15154

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

15155

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

15156

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

15157

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

15158

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

15159

\[ {}\left (-1+x \right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

15160

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

15161

\[ {}\cos \left (x \right ) y+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

15162

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

15163

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

15164

\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

15165

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

15166

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

15167

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

15168

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

15169

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

15170

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

15171

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

15172

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

15173

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

15174

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

15175

\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

15176

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

15177

\[ {}x y^{\prime \prime \prime } = 2 \]

15178

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15179

\[ {}\left (-1+x \right ) y^{\prime \prime } = 1 \]

15180

\[ {}{y^{\prime }}^{4} = 1 \]

15181

\[ {}y^{\prime \prime }+y = 0 \]

15182

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

15183

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15184

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

15185

\[ {}y^{\prime \prime \prime \prime } = x \]

15186

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

15187

\[ {}y^{\prime \prime } \left (2+x \right )^{5} = 1 \]

15188

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

15189

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

15190

\[ {}x y^{\prime \prime } = y^{\prime } \]

15191

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15192

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

15193

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

15194

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

15195

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

15196

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

15197

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

15198

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

15199

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

15200

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]