4.33 Problems 3201 to 3300

Table 4.65: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

3201

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

3202

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

3203

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

3204

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

3205

\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \]

3206

\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

3207

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

3208

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

3209

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right ) \]

3210

\[ {}y^{\prime } = \left (\sin \left (x \right )^{2}-y\right ) \cos \left (x \right ) \]

3211

\[ {}\left (1+x \right ) y^{\prime }-y = x \left (1+x \right )^{2} \]

3212

\[ {}1+y+\left (x -y \left (y+1\right )^{2}\right ) y^{\prime } = 0 \]

3213

\[ {}y^{\prime }+y^{2} = x^{2}+1 \]

3214

\[ {}3 x y^{\prime }-3 x y^{4} \ln \left (x \right )-y = 0 \]

3215

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

3216

\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

3217

\[ {}\left (1+x \right ) \left (y^{\prime }+y^{2}\right )-y = 0 \]

3218

\[ {}x y y^{\prime }+y^{2}-\sin \left (x \right ) = 0 \]

3219

\[ {}2 x^{3}-y^{4}+y^{3} y^{\prime } x = 0 \]

3220

\[ {}y^{\prime }-y \tan \left (x \right )+y^{2} \cos \left (x \right ) = 0 \]

3221

\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

3222

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

3223

\[ {}y = x y^{\prime }+{y^{\prime }}^{3} \]

3224

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

3225

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

3226

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

3227

\[ {}2 {y^{\prime }}^{2} \left (y-x y^{\prime }\right ) = 1 \]

3228

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

3229

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

3230

\[ {}2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right ) \]

3231

\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

3232

\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \]

3233

\[ {}x y^{\prime }+y = 4 \sqrt {y^{\prime }} \]

3234

\[ {}2 x y^{\prime }-y = \ln \left (y^{\prime }\right ) \]

3235

\[ {}x y^{2} \left (x y^{\prime }+y\right ) = 1 \]

3236

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

3237

\[ {}y^{\prime } = \frac {y+2}{1+x} \]

3238

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

3239

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

3240

\[ {}2 \sqrt {x y}-y-x y^{\prime } = 0 \]

3241

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

3242

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

3244

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

3245

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

3246

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

3247

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

3248

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

3249

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

3250

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

3251

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

3252

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

3253

\[ {}y^{\left (6\right )}-64 y = 0 \]

3254

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

3255

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

3256

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

3257

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

3258

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

3259

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

3260

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = \sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \]

3261

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+{\mathrm e}^{2 x} x \]

3262

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

3263

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

3264

\[ {}y^{\prime } = a f \left (x \right ) \]

3265

\[ {}y^{\prime } = y+\sin \left (x \right )+x \]

3266

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

3267

\[ {}y^{\prime } = a +b x +c y \]

3268

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

3269

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

3270

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

3271

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

3272

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

3273

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

3274

\[ {}y^{\prime } = a \,x^{n} y \]

3275

\[ {}y^{\prime } = \cos \left (x \right ) \sin \left (x \right )+\cos \left (x \right ) y \]

3276

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+\cos \left (x \right ) y \]

3277

\[ {}y^{\prime } = y \cot \left (x \right ) \]

3278

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

3279

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

3280

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

3281

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

3282

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

3283

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

3284

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \]

3285

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

3286

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

3287

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

3288

\[ {}y^{\prime } = y \sec \left (x \right ) \]

3289

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

3290

\[ {}y^{\prime } = y \tan \left (x \right ) \]

3291

\[ {}y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

3292

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

3293

\[ {}y^{\prime } = \sec \left (x \right )-y \tan \left (x \right ) \]

3294

\[ {}y^{\prime } = \sin \left (2 x \right )+y \tan \left (x \right ) \]

3295

\[ {}y^{\prime } = \sin \left (2 x \right )-y \tan \left (x \right ) \]

3296

\[ {}y^{\prime } = \sin \left (x \right )+2 y \tan \left (x \right ) \]

3297

\[ {}y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \]

3298

\[ {}y^{\prime } = \csc \left (x \right )+3 y \tan \left (x \right ) \]

3299

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

3300

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]