# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+y = x y^{3} \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{\frac {5}{2}} \] |
✓ |
✓ |
|
\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x y^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \left (-1+2 y \ln \left (x \right )\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-1+x \right ) y^{\prime }-y^{2}-x \left (-2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}2 \cos \left (x \right ) y^{\prime } = y \sin \left (x \right )-y^{3} \] |
✓ |
✓ |
|
\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-\sin \left (x \right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }+\left (1+x \right ) y^{2} = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }-y-1 = \left (1+x \right ) \sqrt {y+1} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x^{2}+2 y-1\right )^{\frac {2}{3}}-x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+8 y^{3} x^{3}+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \,{\mathrm e}^{\frac {y}{x}}+x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (6 x y+x^{2}+3\right ) y^{\prime }+3 y^{2}+2 x y+2 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+x^{2} y\right ) y^{\prime }+x y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime }+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+y^{2} x^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|