3.2.11 Problems 1001 to 1100

Table 3.159: Second order linear ODE




#

ODE

Mathematica

Maple





5430

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \]





5431

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]





5681

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





5682

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]





5683

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]





5684

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]





5685

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]





5686

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]





5687

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]





5688

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]





5689

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]





5690

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5692

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]





5693

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]





5694

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]





5695

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]





5696

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]





5697

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0





5698

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0





5699

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0





5700

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0





5701

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0





5702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0





5703

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0





5704

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]





5705

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]





5706

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]





5707

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-1+t \right ) \]





5708

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]





5709

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \]





5710

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]





5711

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]





5712

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \]





5713

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]





5810

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]





5811

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]





5812

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]





5813

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]





5814

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]





5815

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]





5816

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]





5818

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \]





5819

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]





5821

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]





5822

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]





5823

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]





5824

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]





5825

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]





5826

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y = x +\frac {1}{x} \]





5827

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = x^{2}-1 \]





5828

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]





5829

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]





5830

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]





5831

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]





5832

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]





5833

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]





5849

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5850

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]





5851

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





5852

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]





5853

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]





5854

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]





5855

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]





5856

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]





5857

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]





5859

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]





5867

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]





5868

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]





5869

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]





5870

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]





5872

\[ {}y^{\prime \prime }+4 y = x^{2} \]





5873

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]





5874

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]





5877

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]





5878

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]





5883

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]





5889

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]





5890

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]





5891

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]





5913

\[ {}y^{\prime \prime } = 2+x \]





5917

\[ {}y^{\prime \prime }-y = 0 \]





5918

\[ {}y^{\prime \prime }+4 y = 0 \]





5919

\[ {}y^{\prime \prime }+k^{2} y = 0 \]





5921

\[ {}y^{\prime \prime } = 3 x +1 \]





5944

\[ {}y^{\prime \prime }-4 y = 0 \]





5945

\[ {}3 y^{\prime \prime }+2 y = 0 \]





5946

\[ {}y^{\prime \prime }+16 y = 0 \]





5947

\[ {}y^{\prime \prime } = 0 \]





5948

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]





5949

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





5950

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]





5951

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]





5952

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]





5953

\[ {}y^{\prime \prime }+y = 0 \]





5954

\[ {}y^{\prime \prime }+y = 0 \]





5955

\[ {}y^{\prime \prime }+y = 0 \]





5956

\[ {}y^{\prime \prime }+y = 0 \]





5957

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5958

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]





5959

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]