3.2.16 Problems 1501 to 1600

Table 3.169: Second order linear ODE

#

ODE

Mathematica

Maple

7423

y+y=x2+x+1

7424

y+y=x3+x2+x+1

7425

y+y=sin(x)

7426

y+y=cos(x)

7427

y+y=1

7428

y+y=x

7429

y+y=1+x

7430

y+y=x2+x+1

7431

y+y=x3+x2+x+1

7432

y+y=sin(x)

7433

y+y=cos(x)

7455

y2yx2=xex

7456

yyx+(x+x8)y4x2=x

7457

y+2yx+a2yx4=0

7458

(x2+1)yxyc2y=0

7459

x6y+3x5y+a2y=1x2

7460

x2y3xy+3y=2x3x2

7461

y+cot(x)y+4ycsc(x)2=0

7462

(x2+1)y+(1+x)y+y=4cos(ln(1+x))

7463

y+tan(x)y+cos(x)2y=0

7464

xyy+4x3y=8x3sin(x)2

7465

xyy+4x3y=x5

7466

ycos(x)+ysin(x)2ycos(x)3=2cos(x)5

7467

y+(11x)y+4x2ye2x=4(x3+x2)e3x

7468

yx2y+xy=xm+1

7469

yyx+(x+x8)y4x2=0

7470

cos(x)2y2cos(x)sin(x)y+cos(x)2y=0

7471

y4xy+(4x21)y=3ex2sin(x)

7472

y2bxy+b2x2y=x

7473

y4xy+(4x23)y=ex2

7474

y2tan(x)y+5y=ex2sec(x)

7475

x2y2xy+2(x2+1)y=0

7476

4x2y+4x5y+(x8+6x4+4)y=0

7478

xy+2yxy=0

7479

xy+2y+xy=0

7486

x2y+xy+(x25)y=0

7487

x2y4xy+6y=0

7491

(x21)y2xy+2y=0

7492

(x21)y6xy+12y=0

7493

(x2+3)y7xy+16y=0

7494

(x21)y+8xy+12y=0

7495

3y+xy4y=0

7496

5y2xy+10y=0

7497

yx2y3xy=0

7498

(x2+1)y+2xy2y=0

7499

y+xy2y=0

7500

(x26x+10)y4(x3)y+6y=0

7501

(x2+6x)y+(3x+9)y3y=0

7502

ty+(t21)y+t2y=0

7503

t2yt(2+t)y+(2+t)y=0

7504

ty(t+1)y+y=0

7505

(1t)y+tyy=0

7506

x2y+xy+(x214)y=0

7507

ty(t+1)y+y=0

7508

(1t)y+tyy=0

7509

y+xy+2y=0

7510

(x2+1)y4xy+6y=0

7511

(1x)y+xyy=0

7512

2y+xy+3y=0

7513

y+xy+2y=0

7514

(1x)y+xyy=0

7515

y+xy+2y=0

7516

(x2+4)y+xy+2y=0

7517

4x2y4xy+(16x2+3)y=0

7518

(1+x)yxy+y=0

7519

x2y2xy+(x2+2)y=0

7520

(x22x)y+(x2+2)y+(2x2)y=0

7521

4x2y+(8x2+4x)y+(4x24x1)y=0

7522

y+4xy+(4x2+2)y=0

7523

(2x+1)y2y(2x+3)y=0

7524

xy(2x+2)y+(2+x)y=0

7525

x2y2xy+(x2+2)y=0

7526

4x2y4xy+(16x2+3)y=0

7527

4x2y4xy+(4x2+3)y=0

7528

x2y2xy(x22)y=0

7529

x2y2x(1+x)y+(x2+2x+2)y=0

7530

x2y2x(2+x)y+(x2+4x+6)y=0

7531

x2y4xy+(x2+6)y=0

7532

(1+x)yxy+y=0

7533

4x2y4x(1+x)y+(2x+3)y=0

7534

(3x1)y(2+3x)y(6x8)y=0

7535

(2+x)y+xy+3y=0

7536

x2(1x)y+x(x+4)y+(2x)y=0

7537

x2(1+x)y+x(2x+1)y(4+6x)y=0

7538

x2(2x2+1)y+x(2x2+4)y+2(x2+1)y=0

7539

x2(x2+2)y+2x(x2+5)y+2(x2+3)y=0

7540

(x2+1)y+6xy+6y=0

7541

(x2+1)y+2xy2y=0

7542

(x2+1)y8xy+20y=0

7543

(x2+1)y8xy12y=0

7544

(2x2+1)y+7xy+2y=0

7545

(x2+1)y5xy4y=0

7546

(x2+1)y10xy+28y=0

7547

y+xy+2y=0

7548

(2x2+1)y9xy6y=0

7549

(2x28x+11)y16(2+x)y+36y=0

7550

y+(x3)y+3y=0

7551

(x28x+14)y8(x4)y+20y=0

7552

(2x2+4x+5)y20(1+x)y+60y=0

7553

(x3+1)y+7x2y+9xy=0