3.2.15 Problems 1401 to 1500

Table 3.167: Second order linear ODE

#

ODE

Mathematica

Maple

7146

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

7147

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

7148

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

7149

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

7150

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

7151

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

7152

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7153

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7154

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

7155

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

7156

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

7157

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7158

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

7159

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

7160

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

7161

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

7162

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

7163

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

7164

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

7165

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

7166

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

7167

\[ {}y^{\prime \prime }-x y-x = 0 \]

7168

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

7169

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

7170

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

7171

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

7172

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

7173

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

7174

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

7175

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

7176

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

7177

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

7178

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

7179

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

7180

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7181

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

7182

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

7183

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

7184

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

7185

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

7186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

7187

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7188

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

7189

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

7191

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

7193

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7194

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7195

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7196

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7197

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7198

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7199

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7200

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7201

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7202

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7203

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7205

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

7206

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

7207

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

7220

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

7285

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

7286

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

7287

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

7288

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

7289

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

7292

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

7293

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

7295

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

7296

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

7297

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7298

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

7299

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

7309

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (2+x \right ) {\mathrm e}^{4 x} \]

7310

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

7313

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7390

\[ {}y^{\prime \prime } = 0 \]

7391

\[ {}{y^{\prime \prime }}^{2} = 0 \]

7392

\[ {}{y^{\prime \prime }}^{n} = 0 \]

7393

\[ {}a y^{\prime \prime } = 0 \]

7394

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

7395

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

7396

\[ {}y^{\prime \prime } = 1 \]

7397

\[ {}{y^{\prime \prime }}^{2} = 1 \]

7398

\[ {}y^{\prime \prime } = x \]

7399

\[ {}{y^{\prime \prime }}^{2} = x \]

7400

\[ {}{y^{\prime \prime }}^{3} = 0 \]

7401

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

7404

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7407

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7410

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7413

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

7414

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

7415

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+x \]

7416

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

7417

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

7418

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7419

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

7420

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7421

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7422

\[ {}y^{\prime \prime }+y^{\prime } = 1+x \]