3.3.6 Problems 501 to 600

Table 3.243: Second order ode

#

ODE

Mathematica

Maple

2247

\[ {}y^{\prime \prime }-y^{\prime } = \sin \left (x \right ) {\mathrm e}^{2 x} x \]

2248

\[ {}y^{\prime \prime }-4 y = \cos \left (x \right ) {\mathrm e}^{2 x} x \]

2249

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

2250

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

2251

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

2252

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

2253

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

2254

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

2255

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

2256

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

2257

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

2259

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

2260

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

2261

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (-1+x \right ) \ln \left (x \right ) \]

2273

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

2274

\[ {}y^{\prime \prime } = k^{2} y \]

2275

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

2276

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

2277

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

2278

\[ {}x y^{\prime \prime } = x^{2}+1 \]

2279

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

2280

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

2281

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

2282

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

2283

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

2284

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

2285

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

2286

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

2287

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

2288

\[ {}y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

2289

\[ {}y^{\prime \prime } = y y^{\prime } \]

2290

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

2291

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

2292

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

2293

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

2294

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

2295

\[ {}y^{\prime \prime } = y \]

2296

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

2297

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

2298

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

2299

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

2300

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

2301

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

2302

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

2303

\[ {}y^{\prime \prime } = y^{3} \]

2304

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

2305

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

2306

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

2307

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

2308

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

2309

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

2310

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

2311

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

2312

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

2313

\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

2512

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

2513

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

2514

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

2515

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

2516

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

2517

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2518

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2519

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

2521

\[ {}\frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

2522

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

2523

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

2524

\[ {}\left (-2+x \right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

2525

\[ {}y^{\prime \prime }-y = x^{n} \]

2526

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

2529

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

2587

\[ {}y^{\prime \prime }-25 y = 0 \]

2588

\[ {}y^{\prime \prime }+4 y = 0 \]

2589

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

2592

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2593

\[ {}y^{\prime \prime }-9 y = 0 \]

2594

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

2595

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

2596

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

2597

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

2598

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

2599

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

2600

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

2601

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

2602

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

2603

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

2604

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

2605

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

2613

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

2614

\[ {}y^{\prime \prime } = x^{n} \]

2616

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

2618

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

2619

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

2620

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

2621

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

2660

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

2725

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

2726

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

2727

\[ {}y^{\prime \prime }-36 y = 0 \]

2728

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

2736

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]