# |
ODE |
Mathematica |
Maple |
\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{\frac {5}{2}} {\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = f \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \] |
✓ |
✓ |
|
\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \] |
✓ |
✓ |
|
\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 3 x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \] |
✓ |
✓ |
|
\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \cos \left (x \right ) x^{2} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \] |
✓ |
✓ |
|