3.3.12 Problems 1101 to 1200

Table 3.255: Second order ode

#

ODE

Mathematica

Maple

5710

y+4y+5y=(1Heaviside(t10))ete10δ(t10)

5711

y+5y+6y=δ(tπ2)+Heaviside(tπ)cos(t)

5712

y+5y+6y=Heaviside(1+t)+δ(t2)

5713

y+2y+5y=25t100δ(tπ)

5810

y+2yy=0

5811

y+yxyx2=0

5812

(x2+1)y+xy+y=0

5813

ycot(x)y+cos(x)y=0

5814

y+yx+x2y=0

5815

x2(x2+1)y+2x(x2+1)y2y=0

5816

(x2+1)yxy+y=0

5818

y+x(1x)y+exy=0

5819

x2y+2xy+4y=0

5821

(x2+1)y+xy+y=0

5822

y+xy+y=2xex1

5823

xy+xyy=x2+2x

5824

x2y+xyy=x2+2x

5825

x3y+xyy=cos(1x)

5826

x(1+x)y+(2+x)yy=x+1x

5827

2xy+(2+x)yy=x21

5828

x2(1+x)y+x(4x+3)yy=x+1x

5829

x2(1+ln(x))yxy+y=x(1ln(x))2

5830

xy+2y+xy=sec(x)

5831

(x2+1)yxy+y4=x22+12

5832

(cos(x)+sin(x))y2cos(x)y+(cos(x)sin(x))y=(cos(x)+sin(x))2e2x

5833

(cos(x)sin(x))y2ysin(x)+(cos(x)+sin(x))y=(cos(x)sin(x))2

5849

y2y3y=0

5850

s+2s+s=0

5851

y2y+5y=0

5852

y2y3y=3x+1

5853

y3y+2y=e2xx

5854

y+y=4sin(x)

5855

y+2x2y+(x4+2x1)y=0

5856

px2u+qxu+ru=f(x)

5857

sin(x)u+2cos(x)u+sin(x)u=0

5859

yxyx2+1+yx2+1=0

5860

x2yy=x2y2y2

5865

xxx2=0

5867

u(2x+1)u+(x2+x1)u=0

5868

y+6y+9y=50e2x

5869

y4y+4y=50e2x

5870

y+3y+2y=cos(2x)

5872

y+4y=x2

5873

y4y+3y=x3

5874

y+2y+(1+2(3x+1)2)y=0

5877

x2y2xy+(x2+2)y=0

5878

y+2yx2y(1+x)2=0

5883

ucot(θ)u=0

5889

yyx+(x+x8)y4x2=0

5890

(x2+1)z+(13x)z+kz=0

5891

(x2+1)η(1+x)η+(k+1)η=0

5897

yyy2y2y=0

5913

y=2+x

5917

yy=0

5918

y+4y=0

5919

y+k2y=0

5921

y=3x+1

5944

y4y=0

5945

3y+2y=0

5946

y+16y=0

5947

y=0

5948

y+2iy+y=0

5949

y4y+5y=0

5950

y+(1+3i)y3iy=0

5951

y+y6y=0

5952

y+y6y=0

5953

y+y=0

5954

y+y=0

5955

y+y=0

5956

y+y=0

5957

y2y3y=0

5958

y+(1+4i)y+y=0

5959

y+(1+3i)y3iy=0

5960

y+10y=0

5961

y+4y=cos(x)

5962

y+9y=sin(3x)

5963

y+y=tan(x)

5964

y+2iy+y=x

5965

y4y+5y=3ex+2x2

5966

y7y+6y=sin(x)

5967

y+y=2sin(2x)sin(x)

5968

y+y=sec(x)

5969

4yy=ex

5970

6y+5y6y=x

5971

y+ω2y=Acos(ωx)

5982

y+y=0

5983

yy=0

5989

y2iyy=0

5996

y2iyy=eix2eix

5997

y+4y=cos(x)

5998

y+4y=sin(2x)

5999

y4y=3e2x+4ex

6000

yy2y=x2+cos(x)

6001

y+9y=x2e3x

6002

y+y=excos(2x)x

6003

y+iy+2y=2cosh(2x)+e2x

6006

y+yxyx2=0

6007

y+yxyx2=0

6008

(3x1)2y+(9x3)y9y=0

6009

x2y7xy+15y=0