3.3.12 Problems 1101 to 1200

Table 3.255: Second order ode

#

ODE

Mathematica

Maple

5710

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

5711

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

5712

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \]

5713

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

5810

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5811

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

5812

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5813

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

5814

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

5815

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

5816

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5818

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \]

5819

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

5821

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5822

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

5823

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5824

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5825

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

5826

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y = x +\frac {1}{x} \]

5827

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = x^{2}-1 \]

5828

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

5829

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

5830

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

5831

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

5832

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

5833

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

5849

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5850

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]

5851

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5852

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

5853

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]

5854

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

5855

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

5856

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

5857

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

5859

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

5860

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

5865

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

5867

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

5868

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

5869

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

5870

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

5872

\[ {}y^{\prime \prime }+4 y = x^{2} \]

5873

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

5874

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

5877

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

5878

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

5883

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

5889

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

5890

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

5891

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

5897

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

5913

\[ {}y^{\prime \prime } = 2+x \]

5917

\[ {}y^{\prime \prime }-y = 0 \]

5918

\[ {}y^{\prime \prime }+4 y = 0 \]

5919

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

5921

\[ {}y^{\prime \prime } = 3 x +1 \]

5944

\[ {}y^{\prime \prime }-4 y = 0 \]

5945

\[ {}3 y^{\prime \prime }+2 y = 0 \]

5946

\[ {}y^{\prime \prime }+16 y = 0 \]

5947

\[ {}y^{\prime \prime } = 0 \]

5948

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

5949

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

5950

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

5951

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5952

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5953

\[ {}y^{\prime \prime }+y = 0 \]

5954

\[ {}y^{\prime \prime }+y = 0 \]

5955

\[ {}y^{\prime \prime }+y = 0 \]

5956

\[ {}y^{\prime \prime }+y = 0 \]

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5958

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]

5959

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

5960

\[ {}y^{\prime \prime }+10 y = 0 \]

5961

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

5962

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

5963

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

5964

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

5965

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

5966

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

5967

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

5968

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

5969

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

5970

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

5971

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

5982

\[ {}y^{\prime \prime }+y = 0 \]

5983

\[ {}y^{\prime \prime }-y = 0 \]

5989

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

5996

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

5997

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

5998

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

5999

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

6000

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

6001

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

6002

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \cos \left (2 x \right ) x \]

6003

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

6006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6008

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

6009

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]