3.3.17 Problems 1601 to 1700

Table 3.265: Second order ode

#

ODE

Mathematica

Maple

7214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

7215

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7216

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7217

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7220

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

7285

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

7286

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

7287

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

7288

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

7289

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

7292

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

7293

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

7294

\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \]

7295

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

7296

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

7297

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7298

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

7299

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

7309

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (2+x \right ) {\mathrm e}^{4 x} \]

7310

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

7313

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7315

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

7390

\[ {}y^{\prime \prime } = 0 \]

7391

\[ {}{y^{\prime \prime }}^{2} = 0 \]

7392

\[ {}{y^{\prime \prime }}^{n} = 0 \]

7393

\[ {}a y^{\prime \prime } = 0 \]

7394

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

7395

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

7396

\[ {}y^{\prime \prime } = 1 \]

7397

\[ {}{y^{\prime \prime }}^{2} = 1 \]

7398

\[ {}y^{\prime \prime } = x \]

7399

\[ {}{y^{\prime \prime }}^{2} = x \]

7400

\[ {}{y^{\prime \prime }}^{3} = 0 \]

7401

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

7402

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7403

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7404

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7405

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

7406

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

7407

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7408

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

7409

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

7410

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7411

\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

7412

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

7413

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

7414

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

7415

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+x \]

7416

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

7417

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

7418

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7419

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

7420

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7421

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7422

\[ {}y^{\prime \prime }+y^{\prime } = 1+x \]

7423

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

7424

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

7425

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

7426

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

7427

\[ {}y^{\prime \prime }+y = 1 \]

7428

\[ {}y^{\prime \prime }+y = x \]

7429

\[ {}y^{\prime \prime }+y = 1+x \]

7430

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

7431

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

7432

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7433

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

7434

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7435

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

7436

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7437

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

7438

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

7439

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7440

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

7441

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

7442

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7443

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0 \]

7444

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

7445

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

7446

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

7447

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

7449

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

7450

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7451

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \]

7452

\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7453

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

7454

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

7455

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

7456

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

7457

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

7458

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

7459

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

7460

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

7461

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

7462

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

7463

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7464

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

7465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

7466

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

7467

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

7468

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]