3.3.16 Problems 1501 to 1600

Table 3.263: Second order ode

#

ODE

Mathematica

Maple

7087

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

7091

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

7092

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

7093

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

7094

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

7095

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

7096

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

7097

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

7098

\[ {}y^{\prime \prime } = 0 \]

7099

\[ {}y^{\prime \prime } = 1 \]

7100

\[ {}y^{\prime \prime } = f \left (t \right ) \]

7101

\[ {}y^{\prime \prime } = k \]

7104

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

7105

\[ {}y y^{\prime \prime } = 0 \]

7106

\[ {}y y^{\prime \prime } = 1 \]

7107

\[ {}y y^{\prime \prime } = x \]

7108

\[ {}y^{2} y^{\prime \prime } = x \]

7109

\[ {}y^{2} y^{\prime \prime } = 0 \]

7110

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

7111

\[ {}3 y y^{\prime \prime }+y = 5 \]

7112

\[ {}a y y^{\prime \prime }+b y = c \]

7113

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

7114

\[ {}a y y^{\prime \prime }+b y = 0 \]

7127

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

7131

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

7132

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7133

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7134

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7135

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

7137

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7138

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

7139

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

7140

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

7141

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

7142

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

7143

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

7144

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7145

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

7146

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

7147

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

7148

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

7149

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

7150

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

7151

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

7152

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7153

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7154

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

7155

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

7156

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

7157

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7158

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

7159

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

7160

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

7161

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

7162

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

7163

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

7164

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

7165

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

7166

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

7167

\[ {}y^{\prime \prime }-x y-x = 0 \]

7168

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

7169

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

7170

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

7171

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

7172

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

7173

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

7174

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

7175

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

7176

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

7177

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

7178

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

7179

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

7180

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7181

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

7182

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

7183

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

7184

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

7185

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

7186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

7187

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7188

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

7189

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

7191

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

7193

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7194

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7195

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7196

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7197

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7198

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7199

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7200

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7201

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7202

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7203

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7205

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

7206

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

7207

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

7211

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

7212

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

7213

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]