# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = f \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = k \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = x \] |
✗ |
✗ |
|
\[ {}y^{2} y^{\prime \prime } = x \] |
✗ |
✓ |
|
\[ {}y^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}3 y y^{\prime \prime }+y = 5 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = c \] |
✓ |
✓ |
|
\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|