# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \] |
✓ |
✓ |
|
\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 i y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+8 x^{\prime }+16 x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+10 x^{\prime }+125 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|