3.4.6 Problems 501 to 600

Table 3.347: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

5983

\[ {}y^{\prime \prime }-y = 0 \]

5989

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

6006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6008

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

6009

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6010

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6011

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6012

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

6013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6014

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6016

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

6017

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6018

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6029

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

6030

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

6031

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6032

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6033

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6037

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

6038

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

6093

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

6094

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

6095

\[ {}y^{\prime \prime } = y y^{\prime } \]

6098

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

6099

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6100

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6109

\[ {}y^{\prime \prime }+4 y = 0 \]

6110

\[ {}y^{\prime \prime }-4 y = 0 \]

6136

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6237

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6238

\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

6239

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

6240

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

6242

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6244

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

6245

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6246

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6265

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6266

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

6267

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

6269

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

6270

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6271

\[ {}y^{\prime \prime }+8 y = 0 \]

6272

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6273

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6274

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

6275

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6276

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

6277

\[ {}y^{\prime \prime }+y = 0 \]

6278

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

6279

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

6280

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6281

\[ {}y^{\prime \prime } = 4 y \]

6282

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

6283

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6285

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6286

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

6287

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6288

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6289

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

6290

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6291

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

6292

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

6293

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

6294

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

6295

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6296

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

6297

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6298

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6299

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

6300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

6337

\[ {}y^{\prime \prime }+y = 0 \]

6338

\[ {}y^{\prime \prime }-y = 0 \]

6339

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

6340

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6342

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6343

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-1+x}+\frac {y}{-1+x} = 0 \]

6344

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6345

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

6346

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

6347

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

6371

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

6372

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6373

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

6374

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

6379

\[ {}y^{\prime \prime }+9 y = 0 \]

6399

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6402

\[ {}y^{\prime \prime } = -3 y \]

6403

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6509

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6551

\[ {}y^{\prime \prime }+y = 0 \]

6553

\[ {}y^{\prime \prime }-y = 0 \]

6555

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

6557

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

6619

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

6620

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]