# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }-k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \] |
✗ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 y \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-1+x}+\frac {y}{-1+x} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|