# |
ODE |
Mathematica |
Maple |
\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y y^{\prime \prime }+{y^{\prime }}^{2}+1\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \] |
✓ |
✓ |
|