3.4.7 Problems 601 to 700

Table 3.349: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

6621

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

6622

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

6623

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

6624

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

6625

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

6626

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

6627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

6628

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

6629

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

6630

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

6631

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

6632

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

6633

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

6634

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

6635

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

6636

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

6637

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

6638

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

6639

\[ {}y^{\prime \prime }+y = 0 \]

6640

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6641

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

6642

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

6660

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

6667

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

6670

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6674

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

6675

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

6678

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6679

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

6709

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

6821

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

6822

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6823

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6824

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6825

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6826

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6830

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6832

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6834

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6850

\[ {}\left (y y^{\prime \prime }+{y^{\prime }}^{2}+1\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

6857

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

6858

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6938

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6939

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

6940

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

6941

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

6942

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6943

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

6944

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6945

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

6946

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

6958

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

6989

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

7084

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7085

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

7092

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

7093

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

7094

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

7095

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

7096

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

7097

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

7098

\[ {}y^{\prime \prime } = 0 \]

7105

\[ {}y y^{\prime \prime } = 0 \]

7109

\[ {}y^{2} y^{\prime \prime } = 0 \]

7114

\[ {}a y y^{\prime \prime }+b y = 0 \]

7131

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

7132

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7133

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7134

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7191

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

7213

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

7214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

7215

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7216

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7217

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7286

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

7288

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

7289

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

7293

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

7294

\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \]