3.4.27 Problems 2601 to 2700

Table 3.389: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

11862

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

11863

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

11864

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

11874

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

11875

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

11876

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

11882

\[ {}\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y = 0 \]

11883

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

12014

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

12015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12016

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

12017

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

12018

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]

12019

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]

12020

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

12021

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

12022

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12023

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

12024

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

12025

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

12026

\[ {}y^{\prime \prime }-4 y = 0 \]

12027

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

12028

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]

12048

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

12049

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12050

\[ {}\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

12051

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

12052

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

12053

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

12060

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12061

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

12062

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]

12063

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]

12064

\[ {}x^{2} z^{\prime \prime }+3 z^{\prime } x +4 z = 0 \]

12065

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

12066

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

12067

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

12068

\[ {}3 x^{2} z^{\prime \prime }+5 z^{\prime } x -z = 0 \]

12069

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

12070

\[ {}a y^{\prime \prime }+\left (-a +b \right ) y^{\prime }+c y = 0 \]

12170

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

12179

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

12181

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

12183

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

12184

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

12185

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

12191

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

12192

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

12196

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

12200

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

12204

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

12206

\[ {}y^{\prime \prime } = 2 y^{3} \]

12207

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

12222

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

12241

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

12244

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

12246

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

12249

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]

12250

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (-1+x \right ) y^{\prime }+y = 0 \]

12254

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12255

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

12256

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

12257

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

12258

\[ {}x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

12261

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

12262

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

12264

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

12265

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

12271

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

12273

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

12275

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

12276

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

12277

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (2+x \right ) y}{x^{2} \left (1+x \right )} = 0 \]

12278

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

12280

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 \cos \left (x \right ) y = 0 \]

12283

\[ {}y^{\prime \prime }+9 y = 0 \]

12284

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

12285

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12286

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

12287

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

12288

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

12289

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

12290

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

12291

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

12292

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

12293

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

12295

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

12296

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

12297

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

12298

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

12299

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

12300

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

12301

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

12394

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12395

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

12400

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

12401

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

12410

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

12411

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

12412

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]