# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = a^{2} y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 9 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\alpha y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|