3.5.7 Problems 601 to 700

Table 3.413: Second ODE non-homogeneous ODE




#

ODE

Mathematica

Maple





5401

y+2y=x3+x2+e2x+cos(3x)





5402

y2yy=excos(x)





5403

y4y+4y=e2xx2





5404

yy=xe3x





5405

y+5y+6y=e2xsec(x)2(1+2tan(x))





5406

x2y3xy+4y=x+x2ln(x)





5407

x2y2xy+2y=ln(x)2ln(x2)





5410

(1+x)2y+(1+x)yy=ln(1+x)2+x1





5411

(2x+1)2y2(2x+1)y12y=6x





5413

(x2+1)y2xy+2y=2





5414

(x2+4)y2xy+2y=8





5415

(1+x)y(2x+3)y+(2+x)y=(x2+2x+1)e2x





5417

x2yx(2x+3)y+(x2+3x+3)y=(x2+6)ex





5419

x2y+(4x2+x)y+(4x22x+1)y=(x2x+1)ex





5421

x4y+2x3y+y=1+xx





5422

x8y+4x7y+y=1x3





5423

(xsin(x)+cos(x))yxcos(x)y+cos(x)y=x





5424

xy3y+3yx=2+x





5425

(1+x)y(3x+4)y+3y=(2+3x)e3x





5427

xy+2y+4xy=4





5428

(x2+1)y2xy+2y=x2+1x





5429

y+y2+1=0





5430

(x2+1)y+2xy=2x3





5431

xyy=2xln(x)





5439

(2y+x)y+2y2+2y=2





5682

y+9y=10et





5684

y6y+5y=29cos(2t)





5685

y+7y+12y=21e3t





5687

y4y+3y=6t8





5688

y+y25=t250





5689

y+3y+9y4=9t3+64





5692

y+2y+5y=50t100





5693

y+3y4y=6e2t3





5695

y+6y+8y=e3te5t





5696

y+10y+24y=144t2





5697

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0





5698

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0





5699

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0





5700

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0





5701

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0





5702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0





5703

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0





5704

y+4y=δ(tπ)





5705

y+16y=4δ(t3π)





5706

y+y=δ(tπ)δ(t2π)





5707

y+4y+5y=δ(1+t)





5708

4y+24y+37y=17et+δ(t12)





5709

y+3y+2y=10sin(t)+10δ(1+t)





5710

y+4y+5y=(1Heaviside(t10))ete10δ(t10)





5711

y+5y+6y=δ(tπ2)+Heaviside(tπ)cos(t)





5712

y+5y+6y=Heaviside(1+t)+δ(t2)





5713

y+2y+5y=25t100δ(tπ)





5822

y+xy+y=2xex1





5823

xy+xyy=x2+2x





5824

x2y+xyy=x2+2x





5825

x3y+xyy=cos(1x)





5826

x(1+x)y+(2+x)yy=x+1x





5827

2xy+(2+x)yy=x21





5828

x2(1+x)y+x(4x+3)yy=x+1x





5829

x2(1+ln(x))yxy+y=x(1ln(x))2





5830

xy+2y+xy=sec(x)





5831

(x2+1)yxy+y4=x22+12





5832

(cos(x)+sin(x))y2cos(x)y+(cos(x)sin(x))y=(cos(x)+sin(x))2e2x





5833

(cos(x)sin(x))y2ysin(x)+(cos(x)+sin(x))y=(cos(x)sin(x))2





5852

y2y3y=3x+1





5853

y3y+2y=e2xx





5854

y+y=4sin(x)





5856

px2u+qxu+ru=f(x)





5868

y+6y+9y=50e2x





5869

y4y+4y=50e2x





5870

y+3y+2y=cos(2x)





5872

y+4y=x2





5873

y4y+3y=x3





5913

y=2+x





5921

y=3x+1





5961

y+4y=cos(x)





5962

y+9y=sin(3x)





5963

y+y=tan(x)





5964

y+2iy+y=x





5965

y4y+5y=3ex+2x2





5966

y7y+6y=sin(x)





5967

y+y=2sin(2x)sin(x)





5968

y+y=sec(x)





5969

4yy=ex





5970

6y+5y6y=x





5971

y+ω2y=Acos(ωx)





5996

y2iyy=eix2eix





5997

y+4y=cos(x)





5998

y+4y=sin(2x)





5999

y4y=3e2x+4ex





6000

yy2y=x2+cos(x)





6001

y+9y=x2e3x





6002

y+y=excos(2x)x





6003

y+iy+2y=2cosh(2x)+e2x





6034

x2y5xy+9y=x2





6036

x2y+xy+4y=1





6039

x2y+xy4πy=x





6091

y+y=1





6092

y+exy=ex





6096

xy2y=x3