3.5.8 Problems 701 to 800

Table 3.415: Second ODE non-homogeneous ODE




#

ODE

Mathematica

Maple





6097

y=1+y2





6155

yy=x2





6156

yy=x(1+x)





6241

2yy=1+y2





6243

xy+y=4x





6247

y=1+y2





6248

y+y2=1





6268

xy3y=5x





6302

y+3y10y=6e4x





6303

y+4y=3sin(x)





6304

y+10y+25y=14e5x





6305

y2y+5y=25x2+12





6306

yy6y=20e2x





6307

y3y+2y=14sin(2x)18cos(2x)





6308

y+y=2cos(x)





6309

y2y=12x10





6310

y2y+y=6ex





6311

y2y+2y=exsin(x)





6312

y+y=10x4+2





6313

y+4y=4cos(2x)+6cos(x)+8x24x





6314

y+9y=2sin(3x)+4sin(x)26e2x+27x3





6315

y3y=e2x





6317

y+4y=tan(2x)





6318

y+2y+y=exln(x)





6319

y2y3y=64xex





6320

y+2y+5y=exsec(2x)





6321

2y+3y+y=e3x





6322

y3y+2y=11+ex





6323

y+y=sec(x)





6324

y+y=cot(x)2





6325

y+y=cot(2x)





6326

y+y=xcos(x)





6327

y+y=tan(x)





6328

y+y=sec(x)tan(x)





6329

y+y=sec(x)csc(x)





6330

y2y+y=2x





6331

yy6y=ex





6332

(x21)y2xy+2y=(x21)2





6333

(x2+x)y+(x2+2)y(2+x)y=x(1+x)2





6334

(1x)y+xyy=(1x)2





6335

xy(1+x)y+y=x2e2x





6336

x2y2xy+2y=xex





6375

y2y5y=x





6376

y+y=ex





6377

y+y+y=sin(x)





6378

yy=e3x





6380

yy+4y=x





6381

y+2y+5y=ex





6382

y+3y+4y=sin(x)





6383

y+y=ex





6384

yy=cos(x)





6385

y=tan(x)





6386

y2y=ln(x)





6387

y+3y+2y=2x1





6388

y3y+2y=ex





6389

yy2y=cos(x)





6390

y+2yy=exsin(x)x





6391

y+9y=sec(2x)





6392

y+4y+4y=xln(x)





6393

x2y+3xy+y=2x





6394

y+4y=tan(x)2





6395

yy=3e2x





6396

y+y=8sin(3x)





6397

y+y+y=x2+2x+2





6398

y+y=1+xx





6400

y+9y=3cos(2x)





6499

y+5y+6y=5e3t





6500

y+y6y=t





6501

yy=t2





6505

y+3y5y=1





6506

y+3y2y=6eπt





6507

y+2yy=tet





6508

yy+y=3et





6510

y+3y+3y=2





6511

y+y+2y=t





6512

y7y+12y=te2t





6513

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0





6661

y4y=6e3t3et





6662

y+y=2sin(2t)





6663

y+9y=et





6671

y4y+4y=t3e2t





6672

y6y+9y=t





6673

y4y+4y=t3





6676

yy=etcos(t)





6677

y2y+5y=t+1





6683

y+4y={10t<101t





6684

y+4y=Heaviside(t2π)sin(t)





6685

y5y+6y=Heaviside(1+t)





6686

y+y={00t<π1πt<2π02πt





6687

y+4y+3y=1Heaviside(t2)Heaviside(t4)+Heaviside(t6)





6690

y+9y=cos(3t)





6691

y+y=sin(t)





6692

y+16y={cos(4t)0t<π0πt





6693

y+y={10t<π2sin(t)π2t





6694

tyy=2t2





6695

2y+ty2y=10





6696

y+y=sin(t)+tsin(t)





6699

y+y=δ(t2π)





6700

y+16y=δ(t2π)





6701

y+y=δ(tπ2)+δ(t3π2)