3.5.13 Problems 1201 to 1300

Table 3.425: Second ODE non-homogeneous ODE

#

ODE

Mathematica

Maple

11837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

11838

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

11839

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

11840

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

11841

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

11842

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

11843

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

11844

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

11845

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

11846

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

11847

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

11848

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

11849

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (2+x \right )^{2} \]

11850

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = x^{3} \]

11851

\[ {}x \left (-2+x \right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (-1+x \right ) y = 3 x^{2} \left (-2+x \right )^{2} {\mathrm e}^{x} \]

11852

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

11853

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = \sin \left (x \right )^{3} \]

11868

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

11869

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11870

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

11871

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

11872

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

11877

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

11878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

11879

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

11880

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11881

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

12029

\[ {}x^{\prime \prime }-4 x = t^{2} \]

12030

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

12031

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

12032

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

12033

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

12034

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

12035

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

12036

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

12037

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

12038

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

12039

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

12040

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

12041

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

12042

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]

12043

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]

12054

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

12055

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

12056

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

12057

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

12058

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

12059

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

12164

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

12165

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

12167

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

12168

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

12169

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

12171

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

12172

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

12173

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

12180

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

12182

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

12186

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

12187

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

12189

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \cos \left (x \right ) x \]

12190

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

12195

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

12198

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

12199

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

12205

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

12224

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

12234

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

12236

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

12237

\[ {}y^{\prime \prime } = x^{2}+y \]

12242

\[ {}y y^{\prime \prime } = 1 \]

12248

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

12251

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

12252

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

12253

\[ {}y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

12259

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

12260

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

12263

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

12266

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = \cos \left (x \right ) \]

12267

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

12268

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

12269

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

12270

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

12272

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

12274

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

12279

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

12281

\[ {}y^{\prime \prime }+\frac {\left (-1+x \right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

12282

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

12309

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

12310

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

12311

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

12312

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

12313

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

12314

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

12315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

12316

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]

12318

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

12319

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

12320

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

12322

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]