3.5.15 Problems 1401 to 1500

Table 3.429: Second ODE non-homogeneous ODE




#

ODE

Mathematica

Maple





13177

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]





13178

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]





13179

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]





13180

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]





13181

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]





13182

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]





13183

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]





13184

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]





13185

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]





13186

\[ {}y^{\prime \prime }+2 y = -3 \]





13187

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]





13188

\[ {}y^{\prime \prime }+9 y = 6 \]





13189

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]





13190

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]





13191

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]





13192

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]





13193

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]





13194

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]





13195

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]





13196

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]





13197

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]





13198

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]





13199

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]





13200

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]





13201

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]





13202

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]





13203

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]





13204

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]





13205

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13206

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]





13207

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]





13208

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]





13209

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13210

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]





13211

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13212

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]





13213

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13214

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]





13215

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]





13216

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]





13217

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]





13218

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]





13219

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]





13220

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]





13221

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]





13222

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]





13223

\[ {}y^{\prime \prime }+4 y = 8 \]





13224

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]





13225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]





13226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]





13227

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]





13228

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]





13229

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]





13230

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]





13231

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]





13232

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]





13233

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]





13234

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (-1+t \right )-3 \delta \left (t -4\right ) \]





13235

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]





13236

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]





13237

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]





13238

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]





13240

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13242

\[ {}y^{\prime \prime }+16 y = t \]





13248

\[ {}y^{\prime \prime } = \frac {1+x}{-1+x} \]





13249

\[ {}x^{2} y^{\prime \prime } = 1 \]





13250

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]





13251

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]





13262

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]





13263

\[ {}y^{\prime \prime }-3 = x \]





13271

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]





13473

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]





13476

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13480

\[ {}y^{\prime } y^{\prime \prime } = 1 \]





13483

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]





13485

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]





13487

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13499

\[ {}y^{\prime } y^{\prime \prime } = 1 \]





13501

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]





13505

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13507

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]





13510

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13513

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]





13514

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]





13526

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]





13533

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]





13550

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]





13551

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]





13552

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]





13553

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]





13554

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]





13555

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]





13675

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]





13676

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]





13677

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]





13678

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]





13679

\[ {}y^{\prime \prime }-9 y = 36 \]





13680

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]





13681

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]





13682

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]