3.5.16 Problems 1501 to 1600

Table 3.431: Second ODE non-homogeneous ODE

#

ODE

Mathematica

Maple

13683

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

13685

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

13686

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

13687

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

13688

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

13689

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

13690

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

13691

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

13692

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

13693

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

13694

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

13695

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

13696

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

13697

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

13698

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

13699

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

13700

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]

13701

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

13702

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

13703

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

13704

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

13705

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]

13706

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

13707

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

13708

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

13709

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

13710

\[ {}y^{\prime \prime }+9 y = x^{3} \]

13711

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

13712

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13713

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

13714

\[ {}y^{\prime \prime } = 6 \,{\mathrm e}^{x} \sin \left (x \right ) x \]

13715

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

13716

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

13717

\[ {}y^{\prime \prime }+9 y = 39 \,{\mathrm e}^{2 x} x \]

13718

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

13719

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

13720

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

13721

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

13722

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

13723

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

13724

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

13725

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

13726

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

13727

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

13728

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

13729

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13730

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) {\mathrm e}^{-x} \]

13731

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

13732

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

13733

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

13734

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13735

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

13736

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

13737

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

13738

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

13739

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

13740

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

13741

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

13742

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

13743

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

13744

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

13745

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

13746

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

13747

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

13748

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

13749

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

13750

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

13765

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

13766

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

13767

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

13768

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

13769

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

13770

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

13771

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

13772

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

13773

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

13774

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

13775

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

13776

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 x^{2} \ln \left (x \right ) \]

13777

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

13778

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

13779

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

13780

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

13781

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

13782

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

13783

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

13784

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

13785

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

13786

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

13787

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{-2+x} \]

13788

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

13789

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

13790

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

13791

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

13792

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]

13805

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

13825

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

13829

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

13830

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

13831

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]