3.8.9 Problems 801 to 900

Table 3.501: Third and higher order ode

#

ODE

Mathematica

Maple

13557

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

13558

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

13559

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

13571

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13572

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

13577

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

13578

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

13617

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

13618

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

13619

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

13620

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

13621

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

13622

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

13623

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

13624

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13625

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

13626

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

13627

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13628

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

13629

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13630

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

13631

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

13632

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

13633

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

13634

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

13635

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

13636

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

13637

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

13638

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

13639

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

13640

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

13641

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

13642

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

13667

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13668

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13669

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

13670

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

13671

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

13672

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

13673

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13674

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13684

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

13751

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

13752

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

13753

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

13754

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

13755

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

13756

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

13757

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

13758

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

13759

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

13760

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

13761

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

13762

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

13763

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 \,{\mathrm e}^{x} \cos \left (x \right ) x \]

13764

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

13793

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

13794

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

13795

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

13796

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

13797

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

13798

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

13806

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

13811

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

13821

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

13824

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

13845

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

13846

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

13861

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

13909

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (-1+t \right ) \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

14047

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

14062

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

14063

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14088

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14089

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

14103

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

14637

\[ {}y^{\prime \prime \prime } = 0 \]

14638

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

14639

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

14640

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

14641

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14642

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

14643

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

14644

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

14645

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

14646

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

14647

\[ {}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

14648

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14649

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

14650

\[ {}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

14651

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

14652

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

14653

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

14654

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

14655

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

14656

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

14657

\[ {}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

14658

\[ {}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

14659

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]