# |
ODE |
Mathematica |
Maple |
\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 x}{y}-\frac {y}{x^{2}+y^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{x^{2}+y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \] |
✓ |
✓ |
|
\[ {}3 t +2 y = -t y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{2} \] |
✓ |
✓ |
|
\[ {}2 x y+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y \left (y+1\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {| y|}+1 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = -1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}3 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {\left (1+x \right ) y}{x} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {k y}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}3 y+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \] |
✓ |
✓ |
|
\[ {}2 x y+y^{\prime } = x \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {4 y}{-1+x} = \frac {1}{\left (-1+x \right )^{5}}+\frac {\sin \left (x \right )}{\left (-1+x \right )^{4}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = \frac {2}{x^{2}}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 y+\left (1+x \right ) y^{\prime } = \frac {\sin \left (x \right )}{1+x} \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) \left (-1+x \right ) y^{\prime }-\left (4 x -3\right ) y = \left (-2+x \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}3 y+x y^{\prime } = \frac {2}{x \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}\cot \left (x \right ) y+y^{\prime } = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime }+3 y = \frac {1}{\left (-1+x \right )^{3}}+\frac {\sin \left (x \right )}{\left (-1+x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = 8 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = -x^{2} \] |
✓ |
✓ |
|
\[ {}2 x y+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime }+3 y = \frac {1+\left (-1+x \right ) \sec \left (x \right )^{2}}{\left (-1+x \right )^{3}} \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (2+x \right )^{3}} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = -1 \] |
✓ |
✓ |
|
\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\left (y+1\right )^{2}}-\frac {1}{x \left (y+1\right )} = -\frac {3}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (-1+x \right ) \left (y-1\right ) \left (-2+y\right ) \] |
✓ |
✓ |
|
\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {\left (y+1\right ) \left (y-1\right ) \left (-2+y\right )}{1+x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x \left (y+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x}{1+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-y^{2} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x^{2} \left (y+1\right ) \left (-2+y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) \left (-2+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y-b y^{2} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = \frac {2 x \,{\mathrm e}^{-x}}{1+{\mathrm e}^{x} y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = \frac {x^{6}}{x^{2}+y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \frac {\left (1+x \right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-{\mathrm e}^{-2 x} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {y+{\mathrm e}^{x}}{x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \tan \left (x y\right ) \] |
✓ |
✓ |
|