3.9.4 Problems 301 to 400

Table 3.513: First order ode linear in derivative

#

ODE

Mathematica

Maple

591

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

592

\[ {}\frac {2 x}{y}-\frac {y}{x^{2}+y^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

593

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

594

\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \]

595

\[ {}3 t +2 y = -t y^{\prime } \]

596

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

597

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

598

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \]

869

\[ {}y^{\prime } = 2 y \]

870

\[ {}x y^{\prime }+y = x^{2} \]

871

\[ {}2 x y+y^{\prime } = x \]

872

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

873

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

874

\[ {}y^{\prime } = -x \]

875

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

876

\[ {}y^{\prime } = x \ln \left (x \right ) \]

877

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]

878

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

879

\[ {}y^{\prime } = \tan \left (x \right ) \]

880

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

881

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]

882

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]

883

\[ {}y^{\prime } = -\frac {y \left (y+1\right )}{x} \]

884

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

885

\[ {}y^{\prime } = {| y|}+1 \]

886

\[ {}y^{\prime } = -1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

887

\[ {}y^{\prime }+a y = 0 \]

888

\[ {}y^{\prime }+3 x^{2} y = 0 \]

889

\[ {}x y^{\prime }+y \ln \left (x \right ) = 0 \]

890

\[ {}3 y+x y^{\prime } = 0 \]

891

\[ {}x^{2} y^{\prime }+y = 0 \]

892

\[ {}y^{\prime }+\frac {\left (1+x \right ) y}{x} = 0 \]

893

\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]

894

\[ {}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0 \]

895

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]

896

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]

897

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]

898

\[ {}3 y+y^{\prime } = 1 \]

899

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

900

\[ {}2 x y+y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

901

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

902

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

903

\[ {}y^{\prime }+\frac {4 y}{-1+x} = \frac {1}{\left (-1+x \right )^{5}}+\frac {\sin \left (x \right )}{\left (-1+x \right )^{4}} \]

904

\[ {}x y^{\prime }+\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

905

\[ {}2 y+x y^{\prime } = \frac {2}{x^{2}}+1 \]

906

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right ) \]

907

\[ {}2 y+\left (1+x \right ) y^{\prime } = \frac {\sin \left (x \right )}{1+x} \]

908

\[ {}\left (-2+x \right ) \left (-1+x \right ) y^{\prime }-\left (4 x -3\right ) y = \left (-2+x \right )^{3} \]

909

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

910

\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \]

911

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]

912

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \]

913

\[ {}3 y+x y^{\prime } = \frac {2}{x \left (x^{2}+1\right )} \]

914

\[ {}\cot \left (x \right ) y+y^{\prime } = \cos \left (x \right ) \]

915

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]

916

\[ {}\left (-1+x \right ) y^{\prime }+3 y = \frac {1}{\left (-1+x \right )^{3}}+\frac {\sin \left (x \right )}{\left (-1+x \right )^{2}} \]

917

\[ {}2 y+x y^{\prime } = 8 x^{2} \]

918

\[ {}x y^{\prime }-2 y = -x^{2} \]

919

\[ {}2 x y+y^{\prime } = x \]

920

\[ {}\left (-1+x \right ) y^{\prime }+3 y = \frac {1+\left (-1+x \right ) \sec \left (x \right )^{2}}{\left (-1+x \right )^{3}} \]

921

\[ {}\left (2+x \right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (2+x \right )^{3}} \]

922

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \]

923

\[ {}x y^{\prime }-2 y = -1 \]

924

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

925

\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \]

926

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

927

\[ {}\frac {y^{\prime }}{\left (y+1\right )^{2}}-\frac {1}{x \left (y+1\right )} = -\frac {3}{x^{2}} \]

928

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

929

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

930

\[ {}x y^{\prime }+y^{2}+y = 0 \]

931

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

932

\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{\frac {3}{2}} \]

933

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

934

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

935

\[ {}y^{\prime } = \left (-1+x \right ) \left (y-1\right ) \left (-2+y\right ) \]

936

\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \]

937

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]

938

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]

939

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]

940

\[ {}y^{\prime }+\frac {\left (y+1\right ) \left (y-1\right ) \left (-2+y\right )}{1+x} = 0 \]

941

\[ {}y^{\prime }+2 x \left (y+1\right ) = 0 \]

942

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]

943

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

944

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]

945

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]

946

\[ {}y^{\prime } = 2 y-y^{2} \]

947

\[ {}x +y y^{\prime } = 0 \]

948

\[ {}y^{\prime }+x^{2} \left (y+1\right ) \left (-2+y\right )^{2} = 0 \]

949

\[ {}\left (1+x \right ) \left (-2+x \right ) y^{\prime }+y = 0 \]

950

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

951

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

952

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]

953

\[ {}y^{\prime } = a y-b y^{2} \]

954

\[ {}y+y^{\prime } = \frac {2 x \,{\mathrm e}^{-x}}{1+{\mathrm e}^{x} y} \]

955

\[ {}x y^{\prime }-2 y = \frac {x^{6}}{x^{2}+y} \]

956

\[ {}y^{\prime }-y = \frac {\left (1+x \right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \]

957

\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-{\mathrm e}^{-2 x} y} \]

958

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \]

959

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{x}}{x^{2}+y^{2}} \]

960

\[ {}y^{\prime } = \tan \left (x y\right ) \]