3.9.6 Problems 501 to 600

Table 3.517: First order ode linear in derivative

#

ODE

Mathematica

Maple

1061

y+(2x+1y)y=0

1062

y2+x2y=0

1063

yxy=0

1064

3x2y+2x3y=0

1065

2y3+3y2y=0

1066

5xy+2y+5+2xy=0

1067

xy+x+2y+1+(1+x)y=0

1068

27xy2+8y3+(18x2y+12xy2)y=0

1069

6xy2+2y+(12x2y+12xy2)y=0

1070

y2+(xy2+6xy+1y)y=0

1071

12x3y+24y2x2+(9x4+32x3y+4y)y=0

1072

x2y+4xy+2y+(x2+x)y=0

1073

y+(x4x)y=0

1074

cos(x)cos(y)+(sin(x)cos(y)sin(x)sin(y)+y)y=0

1075

2xy+y2+(2xy+x22xy22xy3)y=0

1076

ysin(y)+x(sin(y)ycos(y))y=0

1077

ay+bxy+(cx+dxy)y=0

1078

3x2y3y2+y+(xy+2x)y=0

1079

2y+3(x2+x2y3)y=0

1080

acos(x)ysin(x)y2+(bcos(x)yxsin(x)y)y=0

1081

x4y4+x5y3y=0

1082

y(xcos(x)+2sin(x))+x(y+1)y=0

1083

x4y3+y+(x5y2x)y=0

1084

3xy+2y2+y+(x2+2xy+x+2y)y=0

1085

12xy+6y3+(9x2+10xy2)y=0

1086

3y2x2+2y+2xy=0

1142

y+y2+k2=0

1143

y+y23y+2=0

1144

y+y2+5y6=0

1145

y+y2+8y+7=0

1146

y+y2+14y+50=0

1147

6y+6y2y1=0

1148

36y+36y212y+1=0

1149

x2(y+y2)x(2+x)y+x+2=0

1150

y+y2+4xy+4x2+2=0

1151

(2x+1)(y+y2)2y2x3=0

1152

(3x1)(y+y2)(2+3x)y6x+8=0

1153

x2(y+y2)+xy+x214=0

1154

x2(y+y2)7xy+7=0

1644

y+sin(t)y=0

1645

y+et2y=0

1646

y2ty=t

1647

y+2ty=t

1648

y+y=1t2+1

1649

cos(t)y+y=0

1650

tsin(t)y+y=0

1651

2tyt2+1+y=1t2+1

1652

y+y=tet

1653

t2y+y=1

1654

t2y+y=t2

1655

tyt2+1+y=1t3yt4+1

1656

t2+1y+y=0

1657

t2+1yet+y=0

1658

y2ty=t

1659

ty+y=t+1

1660

y+y=1t2+1

1661

y2ty=1

1662

ty+(t2+1)y=(t2+1)52

1663

4ty+(t2+1)y=t

1664

yt+y=1t2

1665

y+yt=et2

1666

yt+y=cos(t)+sin(t)t

1667

y+tan(t)y=cos(t)sin(t)

1668

(t2+1)y=1+y2

1669

y=(t+1)(1+y)

1670

y=1t+y2ty2

1671

y=e3+t+y

1672

cos(y)sin(t)y=cos(t)sin(y)

1673

t2(1+y2)+2yy=0

1674

y=2ty+t2y

1675

t2+1y=ty3t2+1

1676

y=3t2+4t+22+2y

1677

cos(y)y=tsin(y)t2+1

1678

y=k(ay)(by)

1679

3ty=cos(t)y

1680

ty=y+t2+y2

1681

2tyy=3y2t2

1682

(tty)y=y

1683

y=t+yty

1684

ety(t+y)y+y(1+ety)=0

1685

y=t+y+1ty+3

1686

1+t2y+(4t3y6)y=0

1687

t+2y+3+(2t+4y1)y=0

1688

2tsin(y)+ety3+(t2cos(y)+3ety2)y=0

1689

1+ety(1+ty)+(1+etyt2)y=0

1690

sec(t)tan(t)+sec(t)2y+(tan(t)+2y)y=0

1691

y222ety+(et+y)y=0

1692

2ty3+3t2y2y=0

1693

2tcos(y)+3t2y+(t3t2sin(y)y)y=0

1694

3t2+4ty+(2t2+2y)y=0

1695

2t2etysin(2t)+etycos(2t)y+(3+etytcos(2t))y=0

1696

3ty+y2+(t2+ty)y=0

1697

y=y2+cos(t2)

1698

y=1+y+y2cos(t)

1699

y=t+y2

1700

y=et2+y2

1701

y=et2+y2

1702

y=et2+y2

1703

y=y+ey+et

1704

y=y3+e5t