3.9.7 Problems 601 to 700

Table 3.519: First order ode linear in derivative

#

ODE

Mathematica

Maple

1705

y=e(t+y)2

1706

y=(4y+et2)e2y

1707

y=et+ln(1+y2)

1708

y=(1+cos(4t))y4(1cos(4t))y2800

1709

y=t2+y2

1710

y=t(1+y)

1711

y=t1y2

1870

(x2+1)y+xy=0

1871

xy2+x+(yx2y)y=0

1872

1+y2+(x2+1)y=0

1873

xy+y=0

1874

y=2xy

1875

xy2+x+(x2yy)y=0

1876

x2+1+1y2y=0

1877

(1+x)y1+y=0

1878

tan(x)yy=1

1879

y+3+cot(x)y=0

1880

y=xy

1881

x=1sin(2t)

1882

xy+y=y2

1883

sin(x)cos(y)2+cos(x)2y=0

1884

sec(x)cos(y)2=cos(x)sin(y)y

1885

xy+y=xy(y1)

1886

xy+x2+1y=0

1887

y=xy+x2y

1888

tan(x)sin(x)2+cos(x)2cot(y)y=0

1889

y2+yy+x2yy1=0

1890

y=yx

1891

2y+xy=0

1892

sin(x)cos(y)+cos(x)sin(y)y=0

1893

x2y+y2=0

1894

y=ey

1895

ey(1+y)=1

1896

1+y2=yx3(1+x)

1897

x2+3xy=y3+2y

1898

(x2+x+1)y=y2+2y+5

1899

(x22x8)y=y2+y2

1900

x+y=xy

1901

(x+y)y+x=y

1902

y+xy=xy

1903

y=2xyx+4y

1904

y+xy=x2y2

1905

x+yy=2y

1906

xyy+x2+y2=0

1907

x2+y2=xyy

1908

(xyx2)yy2=0

1909

xy+y=2xy

1910

x+y+(xy)y=0

1911

y(x2xy+y2)+xy(x2+xy+y2)=0

1912

xyyxsin(yx)=0

1913

y=yx+cosh(yx)

1914

x2+y2=2xyy

1915

(xy+yx)y+1=0

1916

xeyx+y=xy

1917

y=x+yxy

1918

y=yx+tan(yx)

1919

(3xy2x2)y=2y2xy

1920

y=yxkx2+y2

1921

y2(yyx)+x3=0

1922

y=yx+tanh(yx)

1923

x+y(xy+2)y=0

1924

x+(x2y+2)y=0

1925

2xy+1+(x+y)y=0

1926

xy+2+(x+y1)y=0

1927

xy+(x+y+1)y=0

1928

y=x+y1xy1

1929

x+y+(2x+2y1)y=0

1930

xy+1+(xy1)y=0

1931

x+2y+(3x+6y+3)y=0

1932

x+2y+2=(2x+y1)y

1933

3xy+1+(x3y5)y=0

1934

6x3y+6+(2xy+5)y=0

1935

2x+3y+2+(yx)y=0

1936

x+y+4=(2x+2y1)y

1937

2x+3y1+(2x+3y+2)y=0

1938

3xy+2+(x+2y+1)y=0

1939

3x+2y+3(x+2y1)y=0

1940

x2y+3+(1x+2y)y=0

1941

2x+y+(4x+2y+1)y=0

1942

2x+y+(4x2y+1)y=0

1943

x+y+(x2y)y=0

1944

3x+y+(3y+x)y=0

1945

a1x+b1y+c1+(b1x+b2y+c2)y=0

1946

x(6xy+5)+(2x3+3y)y=0

1947

3x2y+xy2+ex+(x3+x2y+sin(y))y=0

1948

2xy(x2+y2)y=0

1949

cos(x)y2sin(y)=(2xcos(y)sin(x))y

1950

2xy1y+(3y+x)yy2=0

1951

exy2x+exy=0

1952

3ysin(x)cos(y)+(xsin(y)3cos(x))y=0

1953

xy2+2y+(2y3x2y+2x)y=0

1954

2yyx2+(1x2xy2)y=0

1955

xy+1y+(x+2y)yy2=0

1956

y(2+x3y)x3=(12x3y)yx2

1957

y2csc(x)2+6xy2=(2ycot(x)3x2)y

1958

2yx3+2xy2=(1x2+2x2y3)y

1959

cos(y)(xsin(y)y2)y=0

1960

2ysin(xy)+(2xsin(xy)+y3)y=0

1961

xcos(xy)y+sin(xy)+cos(x)x2cos(xy)yy2=0

1962

exyy+2xy+(exyx+x2)y=0