3.9.15 Problems 1401 to 1500

Table 3.535: First order ode linear in derivative

#

ODE

Mathematica

Maple

3349

\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \]

3350

\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \]

3351

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

3352

\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

3353

\[ {}y^{\prime } = a \,x^{\frac {n}{1-n}}+b y^{n} \]

3354

\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \]

3355

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

3356

\[ {}y^{\prime } = \sqrt {{| y|}} \]

3357

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

3358

\[ {}y^{\prime } = a x +b \sqrt {y} \]

3359

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

3360

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

3361

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

3362

\[ {}y^{\prime } = y \sqrt {a +b y} \]

3363

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

3364

\[ {}y^{\prime } = \sqrt {X Y} \]

3365

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \]

3366

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

3367

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

3368

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

3369

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

3370

\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \]

3371

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

3372

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

3373

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

3374

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

3375

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

3376

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

3377

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

3378

\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \]

3379

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

3380

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

3381

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

3382

\[ {}y^{\prime } = \left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \]

3383

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

3384

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \]

3385

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

3386

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

3387

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

3388

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

3389

\[ {}y^{\prime }+y \ln \left (x \right ) \ln \left (y\right ) = 0 \]

3390

\[ {}y^{\prime } = x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \]

3391

\[ {}y^{\prime } = a f \left (y\right ) \]

3392

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

3393

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

3394

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

3395

\[ {}2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \]

3396

\[ {}2 y^{\prime }+a x = \sqrt {x^{2} a^{2}-4 b \,x^{2}-4 c y} \]

3397

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

3398

\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \]

3399

\[ {}x y^{\prime }+x +y = 0 \]

3400

\[ {}x y^{\prime }+x^{2}-y = 0 \]

3401

\[ {}x y^{\prime } = x^{3}-y \]

3402

\[ {}x y^{\prime } = 1+x^{3}+y \]

3403

\[ {}x y^{\prime } = x^{m}+y \]

3404

\[ {}x y^{\prime } = x \sin \left (x \right )-y \]

3405

\[ {}x y^{\prime } = x^{2} \sin \left (x \right )+y \]

3406

\[ {}x y^{\prime } = x^{n} \ln \left (x \right )-y \]

3407

\[ {}x y^{\prime } = \sin \left (x \right )-2 y \]

3408

\[ {}x y^{\prime } = a y \]

3409

\[ {}x y^{\prime } = 1+x +a y \]

3410

\[ {}x y^{\prime } = a x +b y \]

3411

\[ {}x y^{\prime } = x^{2} a +b y \]

3412

\[ {}x y^{\prime } = a +b \,x^{n}+c y \]

3413

\[ {}x y^{\prime }+2+\left (3-x \right ) y = 0 \]

3414

\[ {}x y^{\prime }+x +\left (a x +2\right ) y = 0 \]

3415

\[ {}x y^{\prime }+\left (b x +a \right ) y = 0 \]

3416

\[ {}x y^{\prime } = x^{3}+\left (-2 x^{2}+1\right ) y \]

3417

\[ {}x y^{\prime } = a x -\left (-b \,x^{2}+1\right ) y \]

3418

\[ {}x y^{\prime }+x +\left (-x^{2} a +2\right ) y = 0 \]

3419

\[ {}x y^{\prime }+x^{2}+y^{2} = 0 \]

3420

\[ {}x y^{\prime } = x^{2}+y \left (y+1\right ) \]

3421

\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \]

3422

\[ {}x y^{\prime } = a +b y^{2} \]

3423

\[ {}x y^{\prime } = x^{2} a +y+b y^{2} \]

3424

\[ {}x y^{\prime } = a \,x^{2 n}+\left (n +b y\right ) y \]

3425

\[ {}x y^{\prime } = a \,x^{n}+b y+c y^{2} \]

3426

\[ {}x y^{\prime } = k +a \,x^{n}+b y+c y^{2} \]

3427

\[ {}x y^{\prime }+a +x y^{2} = 0 \]

3428

\[ {}x y^{\prime }+\left (1-x y\right ) y = 0 \]

3429

\[ {}x y^{\prime } = \left (1-x y\right ) y \]

3430

\[ {}x y^{\prime } = \left (x y+1\right ) y \]

3431

\[ {}x y^{\prime } = a \,x^{3} \left (1-x y\right ) y \]

3432

\[ {}x y^{\prime } = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

3433

\[ {}x y^{\prime } = y \left (2 x y+1\right ) \]

3434

\[ {}x y^{\prime }+b x +\left (2+a x y\right ) y = 0 \]

3435

\[ {}x y^{\prime }+\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y = 0 \]

3436

\[ {}x y^{\prime }+a \,x^{2} y^{2}+2 y = b \]

3437

\[ {}x y^{\prime }+x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

3438

\[ {}x y^{\prime }+\left (a +b \,x^{n} y\right ) y = 0 \]

3439

\[ {}x y^{\prime } = a \,x^{m}-b y-c \,x^{n} y^{2} \]

3440

\[ {}x y^{\prime } = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

3441

\[ {}x y^{\prime }+\left (1-a y \ln \left (x \right )\right ) y = 0 \]

3442

\[ {}x y^{\prime } = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

3443

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

3444

\[ {}x y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

3445

\[ {}x y^{\prime }+y = a \left (x^{2}+1\right ) y^{3} \]

3446

\[ {}x y^{\prime } = a y+b \left (x^{2}+1\right ) y^{3} \]

3447

\[ {}2 y+x y^{\prime } = a \,x^{2 k} y^{k} \]

3448

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]