# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \] |
✓ |
✓ |
|
\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x +y+b y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1+6 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{\frac {7}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-\frac {\sin \left (2 x \right )}{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{-\sin \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right )-\sin \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-a x -b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+\left (x y-1\right ) f \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x y-x +1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}+y \sin \left (x \right )-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-y \sin \left (2 x \right )-\cos \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b \,x^{\nu } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b \,x^{2 \nu }-c \,x^{\nu -1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (y A -a \right ) \left (B y-b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y \left (y-x \right )-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y^{2}-x^{3} y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{2}-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x^{-1-a} y^{2}-x^{a} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2} \sin \left (x \right )-\frac {2 \sin \left (x \right )}{\cos \left (x \right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{3}+a x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a y^{3}-\frac {b}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 a y^{3}+6 a x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x \left (2+x \right ) y^{3}-\left (x +3\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (4 x \,a^{2}+3 x^{2} a +b \right ) y^{3}+3 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 a \,x^{3} y^{3}+2 x y = 0 \] |
✓ |
✓ |
|