# |
ODE |
Mathematica |
Maple |
\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y \] |
✓ |
✓ |
|
\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \] |
✓ |
✓ |
|
\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \] |
✗ |
✗ |
|
\[ {}y^{\prime }-y = 1 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = t \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \] |
✓ |
✓ |
|
\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y-1+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y}+x \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x +y} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{1-y} \] |
✓ |
✓ |
|
\[ {}p^{\prime } = a p-b p^{2} \] |
✓ |
✓ |
|
\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}u^{\prime }+u^{2} = \frac {1}{x^{\frac {4}{5}}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}f^{\prime } = \frac {1}{f} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \] |
✗ |
✓ |
|
\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{\frac {3}{4}}-3 k x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -1+x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (1-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1 \] |
✓ |
✓ |
|
|
|||
|
|||