3.9.45 Problems 4401 to 4500

Table 3.595: First order ode linear in derivative

#

ODE

Mathematica

Maple

11179

y+xy=x2y2

11180

xsin(yx)ycos(yx)+xcos(yx)y=0

11181

x2y+5+(2xy+4)y=0

11182

y+y(x2+1)32=x+x2+1(x2+1)2

11183

(x2+1)yxy=axy2

11184

xy2(3y+xy)+xy2y=0

11185

(x2+1)y+y=arctan(x)

11186

5xy3y3+(3x27xy2)y=0

11187

y+cos(x)y=sin(2x)2

11188

xy2+yxy=0

11189

(1x)y(y+1)xy=0

11190

3x2y+(x3+x3y2)y=0

11191

(x2+y2)(yy+x)=(x2+y2+x)(y+xy)

11192

2x+3y1+(2x+3y5)y=0

11193

y32x2y+(2xy2x3)y=0

11194

2x3y2y+(2x2y3x)y=0

11195

(x2+y2)(yy+x)+1+x2+y2(yxy)=0

11196

1+eyx+exy(1xy)y=0

11197

xy+yy2ln(x)=0

11198

y4x3+x2y3+xy2+y+(x4y3x3y2x3y+x)y=0

11199

(2xyx)y+y=0

11209

y+2xy=x2+y2

11349

x=2xt

11350

x=tx

11351

x=x2

11353

x=ex

11354

x+2x=t2+4t+7

11355

2tx=x

11358

x=x(1x4)

11359

x=x2+t2

11360

x=tcos(t2)

11361

x=t+1t

11363

x=te2t

11364

x=1tln(t)

11365

tx=cos(t)

11366

x=ett

11368

x=x

11369

x=e2x

11370

y=1+y2

11371

u=152u

11372

x=ax+b

11373

Q=Q4+Q2

11374

x=ex2

11375

y=r(ay)

11376

x=2xt+1

11377

θ=tt2+1sec(θ)

11378

(2u+1)ut1=0

11379

R=(t+1)(1+R2)

11380

y+y+1y=0

11381

(t+1)x+x2=0

11382

y=12y+1

11383

x=(4tx)2

11384

x=2tx2

11385

x=t2ex

11386

x=x(4+x)

11387

x=et+x

11388

T=2at(T2a2)

11389

y=t2tan(y)

11390

x=(4+2t)xln(x)

11391

y=2ty2t2+1

11392

x=t21x2

11393

x=6t(x1)23

11394

x=4t2+3x22tx

11395

xe2t+2xe2t=et

11397

y=y2+2tyt2

11398

y=y2et2

11399

x=2t3x6

11400

cos(t)x2xsin(x)=0

11401

x=tx2

11402

7t2x=3x2t

11403

xx=1tx

11405

x=2xt+t

11406

y+y=et

11407

x+2tx=et2

11408

tx=x+t2

11409

θ=aθ+ebt

11410

(t2+1)x=3tx+6t

11411

x+5xt=t+1

11412

x=(a+bt)x

11413

R+Rt=2t2+1

11414

N=N9et

11415

cos(θ)v+v=3

11416

R=Rt+tet

11417

y+ay=t+1

11418

x=2tx

11419

x+etxt=t

11421

x=(t+x)2

11422

x=ax+b

11423

x+p(t)x=0

11424

x=2x3t+2tx

11425

x=x(1+xet)

11426

x=xt+1tx2

11427

t2y+2tyy2=0

11428

x=ax+bx3

11429

w=tw+t3w3

11430

x3+3tx2x=0

11431

t3+xt+(x2+ln(t))x=0

11432

x=sin(x)xsin(t)tcos(x)+cos(t)

11433

x+3tx2x=0

11434

x2t2x=0