3.9.45 Problems 4401 to 4500

Table 3.595: First order ode linear in derivative

#

ODE

Mathematica

Maple

11179

\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \]

11180

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

11181

\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \]

11182

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{\frac {3}{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

11183

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

11184

\[ {}x y^{2} \left (3 y+x y^{\prime }\right )+x y^{\prime }-2 y = 0 \]

11185

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

11186

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

11187

\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

11188

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

11189

\[ {}\left (1-x \right ) y-\left (y+1\right ) x y^{\prime } = 0 \]

11190

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

11191

\[ {}\left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}+x \right ) \left (-y+x y^{\prime }\right ) \]

11192

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

11193

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

11194

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

11195

\[ {}\left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-x y^{\prime }\right ) = 0 \]

11196

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

11197

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

11198

\[ {}y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (x^{4} y^{3}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime } = 0 \]

11199

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

11209

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

11349

\[ {}x^{\prime } = \frac {2 x}{t} \]

11350

\[ {}x^{\prime } = -\frac {t}{x} \]

11351

\[ {}x^{\prime } = -x^{2} \]

11353

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

11354

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

11355

\[ {}2 t x^{\prime } = x \]

11358

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

11359

\[ {}x^{\prime } = x^{2}+t^{2} \]

11360

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]

11361

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]

11363

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

11364

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

11365

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

11366

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]

11368

\[ {}x^{\prime } = \sqrt {x} \]

11369

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]

11370

\[ {}y^{\prime } = 1+y^{2} \]

11371

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

11372

\[ {}x^{\prime } = a x+b \]

11373

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

11374

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

11375

\[ {}y^{\prime } = r \left (a -y\right ) \]

11376

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

11377

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

11378

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

11379

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

11380

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

11381

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

11382

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

11383

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]

11384

\[ {}x^{\prime } = 2 t x^{2} \]

11385

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]

11386

\[ {}x^{\prime } = x \left (4+x\right ) \]

11387

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]

11388

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]

11389

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]

11390

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]

11391

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]

11392

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]

11393

\[ {}x^{\prime } = 6 t \left (x-1\right )^{\frac {2}{3}} \]

11394

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

11395

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]

11397

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

11398

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]

11399

\[ {}x^{\prime } = 2 t^{3} x-6 \]

11400

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

11401

\[ {}x^{\prime } = t -x^{2} \]

11402

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

11403

\[ {}x x^{\prime } = 1-t x \]

11405

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

11406

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

11407

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

11408

\[ {}t x^{\prime } = -x+t^{2} \]

11409

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

11410

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

11411

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]

11412

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]

11413

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]

11414

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

11415

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

11416

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]

11417

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

11418

\[ {}x^{\prime } = 2 t x \]

11419

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]

11421

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

11422

\[ {}x^{\prime } = a x+b \]

11423

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

11424

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

11425

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

11426

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

11427

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

11428

\[ {}x^{\prime } = a x+b x^{3} \]

11429

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

11430

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

11431

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

11432

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

11433

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

11434

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]