3.9.46 Problems 4501 to 4600

Table 3.597: First order ode linear in derivative




#

ODE

Mathematica

Maple





11435

tcot(x)x=2





11508

x+5x=Heaviside(t2)





11509

x+x=sin(2t)





11517

x=2x+Heaviside(1+t)





11518

x+4x=cos(2t)Heaviside(2πt)





11519

x=x2Heaviside(1+t)





11520

x=x+Heaviside(1+t)Heaviside(t2)





11524

x+3x=δ(1+t)+Heaviside(t4)





11570

y+y=1+x





11574

2xyy+x2+y2=0





11575

xy+y=y3x3





11576

y+3y=3x2e3x





11577

y+4xy=8x





11582

y+2y=6ex+4e2xx





11586

y+y=2xex





11587

y+y=2xex





11593

y=x2sin(y)





11594

y=y22+x





11595

y=y13





11596

3x+2y+(y+2x)y=0





11597

y2+3+(2xy4)y=0





11598

2xy+1+(x2+4y)y=0





11599

3x2y+2(x3+y)y=0





11600

6xy+2y25+(3x2+4xy6)y=0





11601

ysec(x)2+sec(x)tan(x)+(tan(x)+2y)y=0





11602

xy2+x+(x2y3+y)y=0





11603

(2s1)st+ss2t2=0





11604

2y32+1x13+(3xy1)y=0





11605

2xy3+(x2+4y)y=0





11606

3y2x2y3+2x+(2x3y3xy2+1)y=0





11607

2ysin(x)cos(x)+y2sin(x)+(sin(x)22cos(x)y)y=0





11608

exy+2ex+y2+(ex+2xy)y=0





11609

3yx2+(y22x)yxy2=0





11610

1+8xy23x23y13+(2x43y23x13)yy43=0





11611

4x+3y2+2xyy=0





11612

y2+2xyx2y=0





11613

y+x(x2+y2)2+(y(x2+y2)2x)y=0





11614

4xy+(x2+1)y=0





11615

xy+2x+y+2+(x2+2x)y=0





11616

2r(s2+1)+(r4+1)s=0





11617

csc(y)+sec(x)y=0





11618

tan(θ)+2rθ=0





11619

(ev+1)cos(u)+ev(1+sin(u))v=0





11620

(x+4)(1+y2)+y(x2+3x+2)y=0





11621

x+yxy=0





11622

2xy+3y2(2xy+x2)y=0





11623

v3+(u3uv2)v=0





11624

xtan(yx)+yxy=0





11625

(2s2+2st+t2)s+s2+2stt2=0





11626

x3+y2x2+y2xyx2+y2y=0





11627

x+y+xy+(xyx+y)y=0





11628

y+2+y(x+4)y=0





11629

8cos(y)2+csc(x)2y=0





11630

(3x+8)(y2+4)4y(x2+5x+6)y=0





11631

x2+3y22xyy=0





11632

2x5y+(4xy)y=0





11633

3x2+9xy+5y2(6x2+4xy)y=0





11634

x+2y+(2xy)y=0





11635

3xy(x+y)y=0





11636

x2+2y2+(4xyy2)y=0





11637

2x2+2xy+y2+(2xy+x2)y=0





11638

y+3yx=6x2





11639

x4y+2x3y=1





11640

y+3y=3x2e3x





11641

y+4xy=8x





11642

x+xt2=1t2





11643

(u2+1)v+4uv=3u





11644

xy+(2x+1)y1+x=1+x





11645

(x2+x2)y+3(1+x)y=1+x





11646

xy+xy+y1=0





11647

y+(xy2+xy)y=0





11648

r+rtan(t)=cos(t)





11649

cos(t)r+rsin(t)cos(t)4=0





11650

cos(x)2cos(x)y(sin(x)+1)y=0





11651

ysin(2x)cos(x)+(1+sin(x)2)y=0





11652

yyx=y2x





11653

xy+y=2x6y4





11654

y+(4y8y3)x=0





11655

x+(t+1)x2t=t+1tx





11656

xy2y=2x4





11657

y+3x2y=x2





11658

ex(y3(1+ex)2)+(1+ex)y=0





11659

2x(y+1)(x2+1)y=0





11660

r+rtan(t)=cos(t)2





11661

xx=sin(2t)





11662

y+y2x=xy3





11663

xy+y=(xy)32





11664

y+y={20x<101x





11665

y+y={50x<10110x





11666

y+y={ex0x<2e22x





11667

(2+x)y+y={2x0x<242x





11668

ay+by=keλx





11669

y+y=2sin(x)+5sin(2x)





11670

cos(y)y+sin(y)x=1





11671

(y+1)y+x(2y+y2)=x





11672

y=(1x)y2+(2x1)yx





11673

y=y2+xy+1





11674

y=8xy2+4x(1+4x)y8x34x2+1





11675

6x2y(x3+1)y=0





11676

(3y2x2x)y+2xy3y=0