# |
ODE |
Mathematica |
Maple |
\[ {}S^{\prime } = S^{3}-2 S^{2}+S \] |
✓ |
✓ |
|
\[ {}S^{\prime } = S^{3}-2 S^{2}+S \] |
✓ |
✓ |
|
\[ {}S^{\prime } = S^{3}-2 S^{2}+S \] |
✗ |
✓ |
|
\[ {}y^{\prime } = y^{2}+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -t^{2}+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t y+t y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+t^{2} y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t +t y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}-2 \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \] |
✓ |
✓ |
|
\[ {}v^{\prime } = -\frac {v}{R C} \] |
✓ |
✓ |
|
\[ {}v^{\prime } = \frac {K -v}{R C} \] |
✓ |
✓ |
|
\[ {}v^{\prime } = 2 V \left (t \right )-2 v \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \] |
✓ |
✓ |
|
\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y^{3}+t^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2-y \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\left (y+2\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{y-2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \left (y-2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \left (y-2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \left (y-2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \left (y-2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y-12 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y-12 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y-12 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y-12 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (y\right ) \] |
✗ |
✓ |
|
\[ {}w^{\prime } = w \cos \left (w\right ) \] |
✓ |
✓ |
|
\[ {}w^{\prime } = w \cos \left (w\right ) \] |
✓ |
✓ |
|
\[ {}w^{\prime } = w \cos \left (w\right ) \] |
✗ |
✓ |
|
\[ {}w^{\prime } = w \cos \left (w\right ) \] |
✗ |
✓ |
|
\[ {}w^{\prime } = w \cos \left (w\right ) \] |
✗ |
✓ |
|
\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{y-2} \] |
✓ |
✓ |
|
\[ {}v^{\prime } = -v^{2}-2 v-2 \] |
✓ |
✓ |
|
\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \] |
✓ |
✓ |
|
\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y}{t}+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y}{t +1}+t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \] |
✓ |
✓ |
|