3.9.50 Problems 4901 to 5000

Table 3.605: First order ode linear in derivative




#

ODE

Mathematica

Maple





12701

y=yx





12702

y=yx





12703

y=yx2+1+x





12704

y=yx2+1+x





12705

y=yx2+1+x





12706

y=y2





12707

y=y2





12708

y=y2





12709

y=y3





12710

y=y3





12711

y=y3





12712

y=3x22y





12713

y=3x22y





12714

y=3x22y





12715

y=3x22y





12716

y=yx





12717

y=yx





12718

y=yx





12719

y=yx





12720

y=3xy13





12721

y=3xy13





12722

y=3xy13





12723

y=3xy13





12724

y=3xy13





12725

y=(y+2)(y1)





12726

y=(y+2)(y1)





12727

y=(y+2)(y1)





12728

y=yyx





12729

y=yyx





12730

y=yyx





12731

y=yyx





12732

y=xyx2+y2





12733

y=xyx2+y2





12734

y=xyx2+y2





12735

y=x1y2





12736

y=x1y2





12737

y=x1y2





12738

y=x1y2





12739

y=x2+x2+4y2





12740

y=x2+x2+4y2





12741

y=x2+x2+4y2





12742

y=x2+x2+4y2





12743

y=x2+x2+4y2





12773

yiy=0





12785

yy=0





12787

y+2y=4





12792

y=ex





12793

yy=2ex





12799

y2y=6





12800

y+y=ex





12807

y+2y={20x<111x





12814

y+3y=δ(2+x)





12815

y3y=δ(1+x)+2Heaviside(2+x)





12865

y=y+1t+1





12866

y=t2y2





12867

y=t4y





12868

y=2y+1





12869

y=2y





12870

y=ey





12871

x=1+x2





12872

y=2ty2+3y2





12873

y=ty





12874

y=tt2y+y





12875

y=ty13





12876

y=12y+1





12877

y=2y+1t





12878

y=y(1y)





12879

y=4t1+3y2





12880

v=t2v22v+t2





12881

y=1ty+t+y+1





12882

y=ety1+y2





12883

y=y24





12884

w=wt





12885

y=sec(y)





12886

x=tx





12887

y=ty





12888

y=y2





12889

y=t2y3





12890

y=y2





12891

y=tyt2y





12892

y=2y+1





12893

y=ty2+2y2





12894

x=t2x+t3x





12895

y=1y2y





12896

y=(1+y2)t





12897

y=12y+3





12898

y=2ty2+3t2y2





12899

y=y2+5y





12900

y=t2+t





12901

y=t2+1





12902

y=12y





12903

y=4y2





12904

y=2y(1y)





12905

y=y+t+1





12906

y=3y(1y)





12907

y=2yt





12908

y=(y+12)(t+y)





12909

y=(t+1)y





12910

S=S32S2+S





12911

S=S32S2+S