# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-i y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \delta \left (-2+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = \delta \left (-1+x \right )+2 \operatorname {Heaviside}\left (-2+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+1}{t +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{4} y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 1+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{2 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+1}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \] |
✓ |
✓ |
|
\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 \] |
✓ |
✓ |
|
\[ {}w^{\prime } = \frac {w}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \left (y\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -t x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t y^{2}+2 y^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1-y^{2}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2}\right ) t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{2 y+3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+5}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (t +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t +1\right ) y \] |
✓ |
✓ |
|
\[ {}S^{\prime } = S^{3}-2 S^{2}+S \] |
✗ |
✓ |
|
\[ {}S^{\prime } = S^{3}-2 S^{2}+S \] |
✗ |
✓ |
|
|
|||
|
|||