# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = y^{3}+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}1 = \cos \left (y\right ) y^{\prime } \] |
✗ |
✓ |
|
\[ {}\sin \left (y \right )^{2} = x^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{t -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3+y}{3 x +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 y+1}{x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (t \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y-2}{-2+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y-4\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (3 y+1\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 16 y-8 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 12+4 y-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (t \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 10 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = t^{2}-2 t \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = t^{2} \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = t \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x +y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x = y \] |
✓ |
✓ |
|
\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \] |
✓ |
✓ |
|
\[ {}p^{\prime } = t^{3}+\frac {p}{t} \] |
✓ |
✓ |
|
\[ {}v^{\prime }+v = {\mathrm e}^{-s} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 t y = 2 t \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 27 t^{2}+9 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = 27 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = t \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{2 t}-y-\left ({\mathrm e}^{y}-t \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \] |
✓ |
✓ |
|
|
|||
|
|||