3.9.56 Problems 5501 to 5600

Table 3.617: First order ode linear in derivative




#

ODE

Mathematica

Maple





14198

\[ {}y^{\prime } = y^{3}+y \]





14199

\[ {}y^{\prime } = x^{3} \]





14200

\[ {}y^{\prime } = \cos \left (t \right ) \]





14201

\[ {}1 = \cos \left (y\right ) y^{\prime } \]





14202

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]





14203

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]





14204

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]





14205

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]





14206

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]





14207

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]





14208

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]





14209

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]





14210

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]





14211

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]





14212

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]





14213

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]





14214

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]





14215

\[ {}y^{\prime } = y \cos \left (t \right ) \]





14216

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]





14217

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]





14218

\[ {}y^{\prime }+f \left (t \right ) y = 0 \]





14219

\[ {}y^{\prime } = -\frac {y-2}{-2+x} \]





14220

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]





14221

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]





14222

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]





14223

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]





14224

\[ {}y^{\prime } = 3 y \]





14225

\[ {}y^{\prime } = -y \]





14226

\[ {}y^{\prime } = y^{2}-y \]





14227

\[ {}y^{\prime } = 16 y-8 y^{2} \]





14228

\[ {}y^{\prime } = 12+4 y-y^{2} \]





14229

\[ {}y^{\prime } = f \left (t \right ) y \]





14230

\[ {}y^{\prime }-y = 10 \]





14231

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]





14232

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]





14233

\[ {}y^{\prime }-y = t^{2}-2 t \]





14234

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]





14235

\[ {}t y^{\prime }+y = t^{2} \]





14236

\[ {}t y^{\prime }+y = t \]





14237

\[ {}x y^{\prime }+y = x \,{\mathrm e}^{x} \]





14238

\[ {}x y^{\prime }+y = {\mathrm e}^{-x} \]





14239

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]





14240

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]





14241

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]





14242

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]





14243

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]





14244

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]





14245

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]





14246

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]





14247

\[ {}y^{\prime }+x y = x^{3} \]





14248

\[ {}y^{\prime }-x y = x \]





14249

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]





14250

\[ {}y^{\prime }-x = y \]





14251

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]





14252

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]





14253

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]





14254

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]





14255

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]





14256

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]





14257

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]





14258

\[ {}y^{\prime }+2 t y = 2 t \]





14259

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]





14260

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]





14261

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]





14262

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]





14263

\[ {}x^{\prime } = x+t +1 \]





14264

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]





14265

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]





14267

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]





14268

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





14269

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]





14270

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]





14271

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]





14272

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]





14273

\[ {}y^{\prime }-5 y = t \]





14274

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]





14275

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]





14276

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]





14277

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]





14278

\[ {}y^{\prime }-3 y = 27 t^{2} \]





14279

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]





14280

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]





14281

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]





14282

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]





14283

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]





14284

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]





14285

\[ {}y^{\prime }+y = t \]





14286

\[ {}y^{\prime }+y = \sin \left (t \right ) \]





14287

\[ {}y^{\prime }+y = \cos \left (t \right ) \]





14288

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]





14289

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]





14290

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]





14291

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]





14292

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]





14293

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]





14294

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]





14295

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]





14296

\[ {}{\mathrm e}^{2 t}-y-\left ({\mathrm e}^{y}-t \right ) y^{\prime } = 0 \]





14297

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]





14298

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]