# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (-x^{2}+4\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}-16} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 x^{3}-x +2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sin \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (-1+x \right ) \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{\frac {2}{3}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+t^{2} = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+\frac {1}{1-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{5}} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 t^{2}-t y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sqrt {t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 6 y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (t \right ) \] |
✗ |
✗ |
|
\[ {}t y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {25-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {25-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {25-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {25-y^{2}} \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = t^{3} \] |
✓ |
✓ |
|
\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \sec \left (t \right ) = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{-1+t} \] |
✓ |
✓ |
|
\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{2+t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+y = t \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{y} \] |
✓ |
✓ |
|
\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+1}{t +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+2}{2 t +1} \] |
✓ |
✓ |
|
\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+k y = 0 \] |
✓ |
✓ |
|
\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \] |
✓ |
✓ |
|
\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \] |
✓ |
✓ |
|
\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \] |
✓ |
✓ |
|
\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \] |
✓ |
✓ |
|
\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \] |
✓ |
✓ |
|
\[ {}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \] |
✓ |
✓ |
|
\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-3 y+2 \] |
✓ |
✓ |
|
\[ {}4 \left (-1+x \right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (t +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y \] |
✓ |
✓ |
|