[prev] [prev-tail] [tail] [up]
#
ODE
Mathematica
Maple
15146
x2+xy′=3x+y′
✓
15147
xyy′−y2=x4
15148
1y2−xy+x2=y′2y2−xy
15149
(2x−1)y′−2y=1−4xx2
15150
x−y+3+(3x+y+1)y′=0
15151
y′+cos(x2+y2)=cos(x2−y2)
15152
y′(3x2−2x)−y(6x−2)=0
15153
y2y′x−y3=x43
15154
1+exy+exy(1−xy)y′=0
15155
x2+y2−xyy′=0
15156
x−y+2+(x−y+3)y′=0
15157
xy2+y−xy′=0
15158
x2+y2+2x+2yy′=0
15159
(−1+x)(y2−y+1)=(y−1)(x2+x+1)y′
15160
(x−2xy−y2)y′+y2=0
15161
cos(x)y+(2y−sin(x))y′=0
15162
y′−1=e2y+x
15163
2x5+4x3y−2xy2+(y2+2x2y−x4)y′=0
15164
x2yny′=2xy′−y
15165
(3x+3y+a2)y′=4x+4y+b2
15166
x−y2+2xyy′=0
15167
xy′+y=y2ln(x)
15168
sin(ln(x))−cos(ln(y))y′=0
15169
y′=9y2−6y+2x2−2x+5
15170
(5x−7y+1)y′+x+y−1=0
15171
x+y+1+(2x+2y−1)y′=0
15172
y3+2(x2−xy2)y′=0
15173
y′=2(y+2)2(x+y−1)2
15553
x′+3x=e−2t
15554
x′−3x=3t3+3t2+2t+1
15555
x′−x=cos(t)−sin(t)
15556
2x′+6x=te−3t
15557
x′+x=2sin(t)
[prev] [prev-tail] [front] [up]