3.9.59 Problems 5801 to 5900

Table 3.623: First order ode linear in derivative

#

ODE

Mathematica

Maple

15001

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

15002

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]

15003

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

15004

\[ {}\left (1+x \right ) y^{\prime } = y-1 \]

15005

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

15006

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]

15007

\[ {}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2} \]

15008

\[ {}x -y+x y^{\prime } = 0 \]

15009

\[ {}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

15010

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

15011

\[ {}x y^{\prime } = y+\sqrt {-x^{2}+y^{2}} \]

15012

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

15013

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

15014

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

15015

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

15016

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

15017

\[ {}x +y-2+\left (-y+4+x \right ) y^{\prime } = 0 \]

15018

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

15019

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

15020

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

15021

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

15022

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

15023

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

15024

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

15025

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 x y^{\prime } = 0 \]

15026

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

15027

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

15028

\[ {}x^{2}-x y^{\prime } = y \]

15029

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

15030

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

15031

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]

15032

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

15033

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]

15034

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

15035

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

15036

\[ {}y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]

15037

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

15038

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

15039

\[ {}y^{\prime }-{\mathrm e}^{x} y = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

15040

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

15041

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

15042

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]

15043

\[ {}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]

15044

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]

15045

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]

15046

\[ {}2 x y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]

15047

\[ {}x y^{\prime }+y = 2 x \]

15048

\[ {}y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 1 \]

15049

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]

15050

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

15051

\[ {}3 y^{2} y^{\prime } x -2 y^{3} = x^{3} \]

15052

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

15053

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

15054

\[ {}y^{\prime }-2 \,{\mathrm e}^{x} y = 2 \sqrt {{\mathrm e}^{x} y} \]

15055

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

15056

\[ {}2 y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = y^{3} \sin \left (x \right )^{2} \]

15057

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

15058

\[ {}y^{\prime }-\cos \left (x \right ) y = y^{2} \cos \left (x \right ) \]

15059

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

15060

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

15061

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 1+x \]

15062

\[ {}y y^{\prime }+1 = \left (-1+x \right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

15063

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

15064

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

15065

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

15066

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

15067

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

15068

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

15069

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

15070

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

15071

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

15072

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

15073

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

15074

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

15075

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

15076

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

15077

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

15078

\[ {}x^{2}+y-x y^{\prime } = 0 \]

15079

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

15080

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

15081

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 y^{2} y^{\prime } x^{2} = 0 \]

15082

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

15083

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

15084

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

15085

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

15086

\[ {}x -x y+\left (x^{2}+y\right ) y^{\prime } = 0 \]

15118

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 \,{\mathrm e}^{x} y = 1-{\mathrm e}^{2 x} \]

15119

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

15120

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

15121

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+x y+1 \]

15126

\[ {}y^{\prime } = y^{\frac {2}{3}}+a \]

15137

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

15138

\[ {}x \sin \left (x \right ) y^{\prime }+\left (-x \cos \left (x \right )+\sin \left (x \right )\right ) y = \cos \left (x \right ) \sin \left (x \right )-x \]

15139

\[ {}y^{\prime }+\cos \left (x \right ) y = y^{n} \sin \left (2 x \right ) \]

15140

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

15141

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

15142

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

15143

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

15144

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

15145

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]