# |
ODE |
Mathematica |
Maple |
\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \] |
✓ |
✓ |
|
\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \] |
✓ |
✓ |
|
\[ {}x \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = a \] |
✓ |
✓ |
|
\[ {}y^{\frac {2}{5}}+{y^{\prime }}^{\frac {2}{5}} = a^{\frac {2}{5}} \] |
✓ |
✓ |
|
\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \] |
✓ |
✓ |
|
\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y y^{\prime }-4 x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \] |
✗ |
✓ |
|
\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \] |
✓ |
✓ |
|
\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \] |
✓ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \] |
✓ |
✓ |
|
\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{4} = 1 \] |
✓ |
✓ |
|
\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \] |
✓ |
✓ |
|